These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 24823639)

  • 41. Genetic inactivation of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by modulating Kras(G12D)-induced senescence.
    Grasso D; Garcia MN; Hamidi T; Cano C; Calvo E; Lomberk G; Urrutia R; Iovanna JL
    Cell Death Differ; 2014 Oct; 21(10):1633-41. PubMed ID: 24902898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells.
    Nagathihalli NS; Castellanos JA; VanSaun MN; Dai X; Ambrose M; Guo Q; Xiong Y; Merchant NB
    Oncotarget; 2016 Oct; 7(40):65982-65992. PubMed ID: 27602757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas.
    Al Saati T; Clerc P; Hanoun N; Peuget S; Lulka H; Gigoux V; Capilla F; Béluchon B; Couvelard A; Selves J; Buscail L; Carrier A; Dusetti N; Dufresne M
    Am J Pathol; 2013 Jun; 182(6):1996-2004. PubMed ID: 23578383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Loss of ATRX Increases Susceptibility to Pancreatic Injury and Oncogenic KRAS in Female But Not Male Mice.
    Young CC; Baker RM; Howlett CJ; Hryciw T; Herman JE; Higgs D; Gibbons R; Crawford H; Brown A; Pin CL
    Cell Mol Gastroenterol Hepatol; 2019; 7(1):93-113. PubMed ID: 30510993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. EGF receptor is required for KRAS-induced pancreatic tumorigenesis.
    Ardito CM; Grüner BM; Takeuchi KK; Lubeseder-Martellato C; Teichmann N; Mazur PK; Delgiorno KE; Carpenter ES; Halbrook CJ; Hall JC; Pal D; Briel T; Herner A; Trajkovic-Arsic M; Sipos B; Liou GY; Storz P; Murray NR; Threadgill DW; Sibilia M; Washington MK; Wilson CL; Schmid RM; Raines EW; Crawford HC; Siveke JT
    Cancer Cell; 2012 Sep; 22(3):304-17. PubMed ID: 22975374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of Mouse Models of Early Pancreatic Lesions Induced by Alcohol and Chronic Pancreatitis.
    Xu S; Chheda C; Ouhaddi Y; Benhaddou H; Bourhim M; Grippo PJ; Principe DR; Mascariñas E; DeCant B; Tsukamoto H; Pandol SJ; Edderkaoui M
    Pancreas; 2015 Aug; 44(6):882-7. PubMed ID: 26166469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.
    Chen NM; Singh G; Koenig A; Liou GY; Storz P; Zhang JS; Regul L; Nagarajan S; Kühnemuth B; Johnsen SA; Hebrok M; Siveke J; Billadeau DD; Ellenrieder V; Hessmann E
    Gastroenterology; 2015 May; 148(5):1024-1034.e9. PubMed ID: 25623042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular genetics of pancreatic intraepithelial neoplasia.
    Feldmann G; Beaty R; Hruban RH; Maitra A
    J Hepatobiliary Pancreat Surg; 2007; 14(3):224-32. PubMed ID: 17520196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dysplastic lesions and chronic pancreatitis in the Kras(G12D) mouse model.
    Gier B; Matveyenko AV; Kirakossian D; Dawson D; Dry SM; Butler PC
    Diabetes; 2012 May; 61(5):1250-62. PubMed ID: 22266668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling.
    Gruber R; Panayiotou R; Nye E; Spencer-Dene B; Stamp G; Behrens A
    Gastroenterology; 2016 Sep; 151(3):526-39. PubMed ID: 27215660
    [TBL] [Abstract][Full Text] [Related]  

  • 51. p16, p21, and p53 proteins play an important role in development of pancreatic intraepithelial neoplastic.
    Zińczuk J; Zaręba K; Guzińska-Ustymowicz K; Kędra B; Kemona A; Pryczynicz A
    Ir J Med Sci; 2018 Aug; 187(3):629-637. PubMed ID: 29388054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice.
    Kopp JL; Dubois CL; Schaeffer DF; Samani A; Taghizadeh F; Cowan RW; Rhim AD; Stiles BL; Valasek M; Sander M
    Gastroenterology; 2018 Apr; 154(5):1509-1523.e5. PubMed ID: 29273451
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Loss of natural killer T cells promotes pancreatic cancer in LSL-Kras
    Janakiram NB; Mohammed A; Bryant T; Ritchie R; Stratton N; Jackson L; Lightfoot S; Benbrook DM; Asch AS; Lang ML; Rao CV
    Immunology; 2017 Sep; 152(1):36-51. PubMed ID: 28419443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of a novel IL-5 signaling pathway in chronic pancreatitis and crosstalk with pancreatic tumor cells.
    Gitto SB; Beardsley JM; Nakkina SP; Oyer JL; Cline KA; Litherland SA; Copik AJ; Khaled AS; Fanaian N; Arnoletti JP; Altomare DA
    Cell Commun Signal; 2020 Jun; 18(1):95. PubMed ID: 32552827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hyperinsulinemia acts via acinar insulin receptors to initiate pancreatic cancer by increasing digestive enzyme production and inflammation.
    Zhang AMY; Xia YH; Lin JSH; Chu KH; Wang WCK; Ruiter TJJ; Yang JCC; Chen N; Chhuor J; Patil S; Cen HH; Rideout EJ; Richard VR; Schaeffer DF; Zahedi RP; Borchers CH; Johnson JD; Kopp JL
    Cell Metab; 2023 Dec; 35(12):2119-2135.e5. PubMed ID: 37913768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Induction of Pancreatic Inflammation Accelerates Pancreatic Tumorigenesis in Mice.
    Zhuang L; Zhan X; Bi Y; Ji B
    Methods Mol Biol; 2019; 1882():287-297. PubMed ID: 30378063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Epithelial Notch signaling is a limiting step for pancreatic carcinogenesis.
    Thomas MM; Zhang Y; Mathew E; Kane KT; Maillard I; Pasca di Magliano M
    BMC Cancer; 2014 Nov; 14():862. PubMed ID: 25416148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphogenesis of pancreatic cancer: role of pancreatic intraepithelial neoplasia (PanINs).
    Koorstra JB; Feldmann G; Habbe N; Maitra A
    Langenbecks Arch Surg; 2008 Jul; 393(4):561-70. PubMed ID: 18283486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma.
    von Figura G; Fukuda A; Roy N; Liku ME; Morris Iv JP; Kim GE; Russ HA; Firpo MA; Mulvihill SJ; Dawson DW; Ferrer J; Mueller WF; Busch A; Hertel KJ; Hebrok M
    Nat Cell Biol; 2014 Mar; 16(3):255-67. PubMed ID: 24561622
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues.
    Aichler M; Seiler C; Tost M; Siveke J; Mazur PK; Da Silva-Buttkus P; Bartsch DK; Langer P; Chiblak S; Dürr A; Höfler H; Klöppel G; Müller-Decker K; Brielmeier M; Esposito I
    J Pathol; 2012 Apr; 226(5):723-34. PubMed ID: 21984419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.