These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24823802)

  • 41. An extensive phase space for the potential martian biosphere.
    Jones EG; Lineweaver CH; Clarke JD
    Astrobiology; 2011 Dec; 11(10):1017-33. PubMed ID: 22149914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermophoresis and dust devils on the planet Mars.
    Gheynani BT; Emami-Razavi M; Taylor PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056305. PubMed ID: 22181496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers.
    Schuerger AC; Richards JT; Hintze PE; Kern RG
    Astrobiology; 2005 Aug; 5(4):545-59. PubMed ID: 16078871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity.
    Costard F; Forget F; Mangold N; Peulvast JP
    Science; 2002 Jan; 295(5552):110-3. PubMed ID: 11729267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature prediction of space flight experiments by computer thermal analysis.
    Birdsong MB; Luttges MW
    Microgravity Sci Technol; 1995 Feb; 7(4):327-35. PubMed ID: 11538783
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).
    Jensen LL; Merrison J; Hansen AA; Mikkelsen KA; Kristoffersen T; Nørnberg P; Lomstein BA; Finster K
    Astrobiology; 2008 Jun; 8(3):537-48. PubMed ID: 18593229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How do caves breathe: The airflow patterns in karst underground.
    Gabrovšek F
    PLoS One; 2023; 18(4):e0283767. PubMed ID: 37011070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Operational psychology countermeasures during the Lunar-Mars Life Support Test Project.
    Holland AW; Curtis K
    Life Support Biosph Sci; 1998; 5(4):445-52. PubMed ID: 11871454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mars environment and magnetic orbiter scientific and measurement objectives.
    Leblanc F; Langlais B; Fouchet T; Barabash S; Breuer D; Chassefière E; Coates A; Dehant V; Forget F; Lammer H; Lewis S; Lopez-Valverde M; Mandea M; Menvielle M; Pais A; Paetzold M; Read P; Sotin C; Tarits P; Vennerstrom S
    Astrobiology; 2009; 9(1):71-89. PubMed ID: 19317625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Some potentialities of living organisms under simulated Martian conditions.
    Lozina-Lozinsky LK; Bychenkova VN; Zaar EI; Levin VL; Rumyantseva VM
    Life Sci Space Res; 1971; 9():159-65. PubMed ID: 12206179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.
    Noblet A; Stalport F; Guan YY; Poch O; Coll P; Szopa C; Cloix M; Macari F; Raulin F; Chaput D; Cottin H
    Astrobiology; 2012 May; 12(5):436-44. PubMed ID: 22680690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal design and turbidity sensor for autonomous bacterial growth measurements in spaceflight.
    van Benthem R; Krooneman J; de Grave W; Hammenga-Dorenbos H
    Ann N Y Acad Sci; 2009 Apr; 1161():147-65. PubMed ID: 19426313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.
    Fajardo-Cavazos P; Schuerger AC; Nicholson WL
    Astrobiology; 2010 May; 10(4):403-11. PubMed ID: 20528195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Ways of creating a nutrition system for a Martian expedition crew].
    Agureev AN; Kalandarov S
    Aviakosm Ekolog Med; 2003; 37(5):60-3. PubMed ID: 14730736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Antarctic research outpost as a model for planetary exploration.
    Andersen DT; McKay CP; Wharton RA; Rummel JD
    J Br Interplanet Soc; 1990; 43():499-504. PubMed ID: 11539799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subcritical water extractor for Mars analog soil analysis.
    Amashukeli X; Grunthaner FJ; Patrick SB; Yung PT
    Astrobiology; 2008 Jun; 8(3):597-604. PubMed ID: 18680410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the existence and stability of liquid water on the surface of mars today.
    Kuznetz LH; Gan DC
    Astrobiology; 2002; 2(2):183-95. PubMed ID: 12469367
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Abiogenic synthesis on Mars.
    Young RS; Ponnamperuma C; McCaw BK
    Life Sci Space Res; 1965; 3():127-38. PubMed ID: 12035797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia.
    Nicholson WL; Schuerger AC
    Astrobiology; 2005 Aug; 5(4):536-44. PubMed ID: 16078870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Radiation protection using Martian surface materials in human exploration of Mars.
    Kim MH; Thibeault SA; Wilson JW; Heilbronn L; Kiefer RL; Weakley JA; Dueber JL; Fogarty T; Wilkins R
    Phys Med; 2001; 17 Suppl 1():81-3. PubMed ID: 11770542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.