These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24824079)

  • 21. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene.
    Lin Y; Connell JW
    Nanoscale; 2012 Nov; 4(22):6908-39. PubMed ID: 23023445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indirect-direct band gap transition through electric tuning in bilayer MoS2.
    Zhang ZY; Si MS; Wang YH; Gao XP; Sung D; Hong S; He J
    J Chem Phys; 2014 May; 140(17):174707. PubMed ID: 24811655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable magnetic and electronic properties of BN nanosheets with triangular defects: a first-principles study.
    Wang Y; Ding Y
    J Phys Condens Matter; 2014 Oct; 26(43):435302. PubMed ID: 25299579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism.
    Zhang Z; Zeng XC; Guo W
    J Am Chem Soc; 2011 Sep; 133(37):14831-8. PubMed ID: 21834534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the electronic properties and work functions of graphane/fully hydrogenated h-BN heterobilayers via heteronuclear dihydrogen bonding and electric field control.
    Liang Q; Jiang J; Meng R; Ye H; Tan C; Yang Q; Sun X; Yang D; Chen X
    Phys Chem Chem Phys; 2016 Jun; 18(24):16386-95. PubMed ID: 27265511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale Multilayer Transition-Metal Dichalcogenide Heterostructures: Band Gap Modulation by Interfacial Strain and Spontaneous Polarization.
    Kou L; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 May; 4(10):1730-6. PubMed ID: 26282986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic properties of pure and p-type doped hexagonal sheets and zigzag nanoribbons of InP.
    Longo RC; Carrete J; Alemany MM; Gallego LJ
    J Phys Condens Matter; 2013 Feb; 25(8):085506. PubMed ID: 23364241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water-Induced Bandgap Engineering in Nanoribbons of Hexagonal Boron Nitride.
    Chen C; Hang Y; Wang HS; Wang Y; Wang X; Jiang C; Feng Y; Liu C; Janzen E; Edgar JH; Wei Z; Guo W; Hu W; Zhang Z; Wang H; Xie X
    Adv Mater; 2023 Sep; 35(36):e2303198. PubMed ID: 37400106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons.
    Chen W; Li Y; Yu G; Li CZ; Zhang SB; Zhou Z; Chen Z
    J Am Chem Soc; 2010 Feb; 132(5):1699-705. PubMed ID: 20085366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electric field effects on armchair MoS2 nanoribbons.
    Dolui K; Pemmaraju CD; Sanvito S
    ACS Nano; 2012 Jun; 6(6):4823-34. PubMed ID: 22546015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Edge Oxidation on the Structural, Electronic, and Magnetic Properties of Zigzag Boron Nitride Nanoribbons.
    Krepel D; Hod O
    J Chem Theory Comput; 2014 Jan; 10(1):373-80. PubMed ID: 26579916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic and magnetic properties of substituted BN sheets: a density functional theory study.
    Zhou YG; Yang P; Wang ZG; Zu XT; Xiao HY; Sun X; Khaleel MA; Gao F
    Phys Chem Chem Phys; 2011 Apr; 13(16):7378-83. PubMed ID: 21423980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G; Shishkin M; Marsman M; Paier J
    J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable band gaps in bilayer graphene-BN heterostructures.
    Ramasubramaniam A; Naveh D; Towe E
    Nano Lett; 2011 Mar; 11(3):1070-5. PubMed ID: 21275424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The band structure engineering of fluorine-passivated graphdiyne nanoribbons
    Xu J; Wan Q; Wang Z; Lin S
    Phys Chem Chem Phys; 2020 Dec; 22(46):26995-27001. PubMed ID: 33210673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zigzag graphene nanoribbons: bandgap and midgap state modulation.
    Raza H
    J Phys Condens Matter; 2011 Sep; 23(38):382203. PubMed ID: 21891831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsic half-metallicity in modified graphene nanoribbons.
    Dutta S; Manna AK; Pati SK
    Phys Rev Lett; 2009 Mar; 102(9):096601. PubMed ID: 19392544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.
    Woo J; Yun KH; Chung YC
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10477-82. PubMed ID: 27046262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.