These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 24824171)

  • 21. Alkaline Bohr effect of human hemoglobin Ao.
    Di Cera E; Doyle ML; Gill SJ
    J Mol Biol; 1988 Apr; 200(3):593-9. PubMed ID: 2840510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bohr effect in hemoglobin deoxy/cyanomet intermediates.
    Perrella M; Benazzi L; Ripamonti M; Rossi-Bernardi L
    Biochemistry; 1994 Aug; 33(34):10358-66. PubMed ID: 8068672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionizable groups linked to the reaction of 2,2'-dithiobispyridine with hemoglobin.
    Okonjo KO; Aboluwoye CO
    Biochim Biophys Acta; 1992 Oct; 1159(3):303-10. PubMed ID: 1390936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of deoxyhemoglobin Cowtown [His HC3(146) beta----Leu]: origin of the alkaline Bohr effect and electrostatic interactions in hemoglobin.
    Perutz MF; Fermi G; Shih TB
    Proc Natl Acad Sci U S A; 1984 Aug; 81(15):4781-4. PubMed ID: 6589624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The binding of chloride ions to ligated and unligated human hemoglobin and its influence on the Bohr effect.
    van Beek GG; Zuiderweg ER; de Bruin SH
    Eur J Biochem; 1979 Sep; 99(2):379-83. PubMed ID: 40792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in the Bohr effect due to pyridoxylation of the alpha-chain terminal amino groups of hemoglobin.
    Schnackerz KD; Benesch RE; Benesch R; Kwong S; Ciurak M
    Biochim Biophys Acta; 1984 Nov; 790(3):226-9. PubMed ID: 6487637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bis[2-(3-carboxyphenoxy)carbonylethyl]phosphinic acid (m-BCCEP): a novel affinity cross-linking reagent for the beta-cleft modification of human hemoglobin.
    Cai H; Roach TA; Dabek M; Somerville KS; Acharya S; Hosmane RS
    Bioconjug Chem; 2010 Aug; 21(8):1494-507. PubMed ID: 20715854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of histidine (HC3) (146 beta) to the R state Bohr effect of human hemoglobin.
    Kwiatkowski LD; Noble RW
    J Biol Chem; 1982 Aug; 257(15):8891-5. PubMed ID: 6807984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization of barstar by chemical modification of the buried cysteines.
    Ramachandran S; Udgaonkar JB
    Biochemistry; 1996 Jul; 35(26):8776-85. PubMed ID: 8679642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroelectrochemical study of hemoglobin A, alpha- and beta-fumarate crosslinked hemoglobins; implications to autoxidation reaction.
    Dragan SA; Olsen KW; Moore EG; Fitch A
    Bioelectrochemistry; 2008 Jun; 73(1):55-63. PubMed ID: 18515189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chloride masks effects of opposing positive charges in Hb A and Hb Hinsdale (beta 139 Asn-->Lys) that can modulate cooperativity as well as oxygen affinity.
    Bonaventura C; Arumugam M; Cashon R; Bonaventura J; Moo-Penn WF
    J Mol Biol; 1994 Jun; 239(4):561-8. PubMed ID: 8006968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic effects in hemoglobin: Bohr effect and ionic strength dependence of individual groups.
    Matthew JB; Hanania GI; Gurd FR
    Biochemistry; 1979 May; 18(10):1928-36. PubMed ID: 35218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bohr effect of avian hemoglobins: Quantitative analyses based on the Wyman equation.
    Okonjo KO
    J Theor Biol; 2016 Dec; 410():25-35. PubMed ID: 27614259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of carboxymethylated cross-linked hemoglobin A.
    Fantl WJ; Manning LR; Ueno H; Di Donato A; Manning JM
    Biochemistry; 1987 Sep; 26(18):5755-61. PubMed ID: 3676286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-jump studies on hemoglobin. Kinetic evidence for a non-quaternary isomerization process in deoxy- and carbonmonoxyhemoglobin.
    Okonjo KO; Vega-Catalan FJ; Ubochi CI
    J Mol Biol; 1989 Jul; 208(2):347-54. PubMed ID: 2769762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molar absorption coefficients for the reduced Ellman reagent: reassessment.
    Eyer P; Worek F; Kiderlen D; Sinko G; Stuglin A; Simeon-Rudolf V; Reiner E
    Anal Biochem; 2003 Jan; 312(2):224-7. PubMed ID: 12531209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic differentiation between ligand-induced and pre-existent asymmetric models.
    Wang ZX; Pan XM
    FEBS Lett; 1996 Jun; 388(1):73-5. PubMed ID: 8654593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.