These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24824182)

  • 21. Direct detection of stereospecific soman hydrolysis by wild-type human serum paraoxonase.
    Yeung DT; Smith JR; Sweeney RE; Lenz DE; Cerasoli DM
    FEBS J; 2007 Mar; 274(5):1183-91. PubMed ID: 17286579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination.
    Bigley AN; Desormeaux E; Xiang DF; Bae SY; Harvey SP; Raushel FM
    Biochemistry; 2019 Apr; 58(15):2039-2053. PubMed ID: 30893549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro.
    Worek F; Seeger T; Goldsmith M; Ashani Y; Leader H; Sussman JS; Tawfik D; Thiermann H; Wille T
    Arch Toxicol; 2014 Jun; 88(6):1257-66. PubMed ID: 24477626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-exposure treatment of VX poisoned guinea pigs with the engineered phosphotriesterase mutant C23: a proof-of-concept study.
    Worek F; Seeger T; Reiter G; Goldsmith M; Ashani Y; Leader H; Sussman JL; Aggarwal N; Thiermann H; Tawfik DS
    Toxicol Lett; 2014 Nov; 231(1):45-54. PubMed ID: 25195526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase.
    Amitai G; Gaidukov L; Adani R; Yishay S; Yacov G; Kushnir M; Teitlboim S; Lindenbaum M; Bel P; Khersonsky O; Tawfik DS; Meshulam H
    FEBS J; 2006 May; 273(9):1906-19. PubMed ID: 16640555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences in amino acid residues in the binding pockets dictate substrate specificities of mouse senescence marker protein-30, human paraoxonase1, and squid diisopropylfluorophosphatase.
    Belinskaya T; Pattabiraman N; diTargiani R; Choi M; Saxena A
    Biochim Biophys Acta; 2012 May; 1824(5):701-10. PubMed ID: 22401958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents.
    Tsai PC; Fox N; Bigley AN; Harvey SP; Barondeau DP; Raushel FM
    Biochemistry; 2012 Aug; 51(32):6463-75. PubMed ID: 22809162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational design of paraoxonase 1 (PON1) for the efficient hydrolysis of organophosphates.
    Le QA; Chang R; Kim YH
    Chem Commun (Camb); 2015 Oct; 51(77):14536-9. PubMed ID: 26286433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents.
    Trovaslet-Leroy M; Musilova L; Renault F; Brazzolotto X; Misik J; Novotny L; Froment MT; Gillon E; Loiodice M; Verdier L; Masson P; Rochu D; Jun D; Nachon F
    Toxicol Lett; 2011 Sep; 206(1):14-23. PubMed ID: 21683774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase.
    Lai K; Stolowich NJ; Wild JR
    Arch Biochem Biophys; 1995 Apr; 318(1):59-64. PubMed ID: 7726573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput screening system based on phenolics-responsive transcription activator for directed evolution of organophosphate-degrading enzymes.
    Jeong YS; Choi SL; Kyeong HH; Kim JH; Kim EJ; Pan JG; Rha E; Song JJ; Lee SG; Kim HS
    Protein Eng Des Sel; 2012 Nov; 25(11):725-31. PubMed ID: 23077277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase.
    Ghanem E; Raushel FM
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro.
    Goldsmith M; Eckstein S; Ashani Y; Greisen P; Leader H; Sussman JL; Aggarwal N; Ovchinnikov S; Tawfik DS; Baker D; Thiermann H; Worek F
    Arch Toxicol; 2016 Nov; 90(11):2711-2724. PubMed ID: 26612364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational variability of organophosphorus hydrolase upon soman and paraoxon binding.
    Gomes DE; Lins RD; Pascutti PG; Lei C; Soares TA
    J Phys Chem B; 2011 Dec; 115(51):15389-98. PubMed ID: 22098575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-level extracellular secretion of organophosphorous hydrolase of Flavobacterium sp. in Escherichia coli BL21(DE3)pLysS.
    Falahati-Pour SK; Lotfi AS; Ahmadian G; Baghizadeh A; Behroozi R; Haghighi F
    Biotechnol Appl Biochem; 2016 Nov; 63(6):870-876. PubMed ID: 26331355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing organophosphate hydrolase efficacy via protein engineering and immobilization strategies.
    Katyal P; Chu S; Montclare JK
    Ann N Y Acad Sci; 2020 Nov; 1480(1):54-72. PubMed ID: 32814367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variants of Phosphotriesterase for the Enhanced Detoxification of the Chemical Warfare Agent VR.
    Bigley AN; Mabanglo MF; Harvey SP; Raushel FM
    Biochemistry; 2015 Sep; 54(35):5502-12. PubMed ID: 26274608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of organophosphate pesticide using recombinant Cyanobacteria with surface- and intracellular-expressed organophosphorus hydrolase.
    Chungjatupornchai W; Fa-Aroonsawat S
    J Microbiol Biotechnol; 2008 May; 18(5):946-51. PubMed ID: 18633296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters.
    Briseño-Roa L; Timperley CM; Griffiths AD; Fersht AR
    Protein Eng Des Sel; 2011 Jan; 24(1-2):151-9. PubMed ID: 21037279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational protein design and protein-ligand interaction studies for the improvement of organophosphorus degrading potential of Deinococcus radiodurans.
    Manoharan P; Sridhar J
    J Mol Graph Model; 2018 Aug; 83():12-16. PubMed ID: 29753940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.