BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24824658)

  • 61. Antagonism of NMDA receptors by butanesulfonyl-homospermine guanidine and neuroprotective effects in in vitro and in vivo.
    Masuko T; Suzuki T; Miyake M; Kusama-Eguchi K; Kizawa Y; Tomono K; Kashiwagi K; Igarashi K; Kusama T
    Neurosci Lett; 2012 Jan; 506(2):251-5. PubMed ID: 22119002
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis and paralytic activities of squaryl amino acid-containing polyamine toxins.
    Shinada T; Nakagawa Y; Hayashi K; Corzo G; Nakajima T; Ohfune Y
    Amino Acids; 2003 Apr; 24(3):293-301. PubMed ID: 12707812
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Solid-phase synthesis and biological evaluation of a combinatorial library of philanthotoxin analogues.
    Strømgaard K; Brier TJ; Andersen K; Mellor IR; Saghyan A; Tikhonov D; Usherwood PN; Krogsgaard-Larsen P; Jaroszewski JW
    J Med Chem; 2000 Nov; 43(23):4526-33. PubMed ID: 11087577
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Total synthesis of polyamine toxin HO-416b and Agel-489 using a 2-nitrobenzenesulfonamide strategy.
    Hidai Y; Kan T; Fukuyama T
    Chem Pharm Bull (Tokyo); 2000 Oct; 48(10):1570-6. PubMed ID: 11045471
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of polyamine derivatives having non-hypotensive Ca2 +-permeable AMPA receptor antagonist activity.
    Yoneda Y; Kawajiri S; Hasegawa A; Kito F; Katano S; Takano E; Mimura T
    Bioorg Med Chem Lett; 2001 May; 11(10):1261-4. PubMed ID: 11392532
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Controlling Ca
    Nørager NG; Poulsen MH; Strømgaard K
    J Med Chem; 2018 Sep; 61(17):8048-8053. PubMed ID: 30125106
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Finding of primitive polyamine toxins in the venom of a joro spider, Nephila clavata.
    Chiba T; Akizawa T; Matsukawa M; Pan-Hou H; Yoshioka M
    Chem Pharm Bull (Tokyo); 1994 Sep; 42(9):1864-9. PubMed ID: 7954940
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preparation and biological assessment of hydroxycinnamic acid amides of polyamines.
    Fixon-Owoo S; Levasseur F; Williams K; Sabado TN; Lowe M; Klose M; Joffre Mercier A; Fields P; Atkinson J
    Phytochemistry; 2003 Jun; 63(3):315-34. PubMed ID: 12737981
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An efficient and versatile synthesis of acylpolyamine spider toxins.
    Nihei K; Kato MJ; Yamane T; Palma MS; Konno K
    Bioorg Med Chem Lett; 2002 Feb; 12(3):299-302. PubMed ID: 11814782
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polyamines and polyamine amides from wasps and spiders.
    Blagbrough IS; Moya E; Taylor S
    Biochem Soc Trans; 1994 Nov; 22(4):888-93. PubMed ID: 7535265
    [No Abstract]   [Full Text] [Related]  

  • 71. Action of argiotoxin636 on N-methyl-D-aspartate channels in cerebellar cells.
    Fagni L; Bockaert J
    Neuroreport; 1995 May; 6(7):1037-40. PubMed ID: 7632890
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Possible influence of intramolecular hydrogen bonds on the three-dimensional structure of polyamine amides and their interaction with ionotropic glutamate receptors.
    Tikhonov DB; Magazanik LG; Mellor IR; Usherwood PN
    Recept Channels; 2000; 7(3):227-36. PubMed ID: 11342390
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Argiotoxin detects molecular differences in AMPA receptor channels.
    Herlitze S; Raditsch M; Ruppersberg JP; Jahn W; Monyer H; Schoepfer R; Witzemann V
    Neuron; 1993 Jun; 10(6):1131-40. PubMed ID: 7686380
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Solid phase syntheses of polyamine toxins HO-416b and PhTX-433. Use of an efficient polyamide reduction strategy that facilitates access to branched analogues.
    Wang F; Manku S; Hall DG
    Org Lett; 2000 Jun; 2(11):1581-3. PubMed ID: 10841484
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural Foundation for Insect-Selective Activity of Acylpolyamine Toxins from Spider Araneus ventricosus.
    Liu K; Wang M; Jiang L; Tang X; Liu Z; Zhou Z; Hu W; Duan Z; Liang S
    Chem Res Toxicol; 2019 Apr; 32(4):659-667. PubMed ID: 30810307
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Open-channel blockers of the NMDA receptor complex.
    Albensi BC; Ilkanich E
    Drug News Perspect; 2004 Nov; 17(9):557-62. PubMed ID: 15645013
    [TBL] [Abstract][Full Text] [Related]  

  • 77. New linear polyamine derivatives in spider venoms.
    Tzouros M; Chesnov S; Bienz S; Hesse M; Bigler L
    Toxicon; 2005 Sep; 46(3):350-4. PubMed ID: 15982700
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interaction of a polyamine amide wasp toxin with cloned and mutant glutamate receptors.
    Tomlinson SR; Kirwin S; Mellor I; Harris J; Mundey M; Brierley M; Bell DR; Usherwood PN
    Biochem Soc Trans; 1997 Aug; 25(3):551S. PubMed ID: 9388765
    [No Abstract]   [Full Text] [Related]  

  • 79. Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders.
    Budd T; Clinton P; Dell A; Duce IR; Johnson SJ; Quicke DL; Taylor GW; Usherwood PN; Usoh G
    Brain Res; 1988 May; 448(1):30-9. PubMed ID: 2839270
    [TBL] [Abstract][Full Text] [Related]  

  • 80. (7S)-Kaitocephalin as a potent NMDA receptor selective ligand.
    Yasuno Y; Hamada M; Kawasaki M; Shimamoto K; Shigeri Y; Akizawa T; Konishi M; Ohfune Y; Shinada T
    Org Biomol Chem; 2016 Jan; 14(4):1206-10. PubMed ID: 26660454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.