BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24824940)

  • 21. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs.
    Kanamori A; Nakamura M; Matsui N; Nagai A; Nakanishi Y; Kusuhara S; Yamada Y; Negi A
    Ophthalmology; 2004 Dec; 111(12):2278-83. PubMed ID: 15582087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study.
    Savini G; Zanini M; Carelli V; Sadun AA; Ross-Cisneros FN; Barboni P
    Br J Ophthalmol; 2005 Apr; 89(4):489-92. PubMed ID: 15774930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determinants of perimacular inner retinal layer thickness in normal eyes measured by Fourier-domain optical coherence tomography.
    Kim NR; Kim JH; Lee J; Lee ES; Seong GJ; Kim CY
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3413-8. PubMed ID: 21357406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of structure and function of the mouse retina using pattern electroretinography, pupil light reflex, and optical coherence tomography.
    Mohan K; Harper MM; Kecova H; Ye EA; Lazic T; Sakaguchi DS; Kardon RH; Grozdanic SD;
    Vet Ophthalmol; 2012 Sep; 15 Suppl 2():94-104. PubMed ID: 22642927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity and specificity of time-domain and spectral-domain optical coherence tomography in differentiating optic nerve head drusen and optic disc oedema.
    Flores-Rodríguez P; Gili P; Martín-Ríos MD
    Ophthalmic Physiol Opt; 2012 May; 32(3):213-21. PubMed ID: 22428958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness measured by spectral-domain optical coherence tomography.
    Hwang YH; Yoo C; Kim YY
    J Glaucoma; 2012; 21(4):260-5. PubMed ID: 21623226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo imaging of the mouse retina using high-resolution optical coherence tomography.
    Machalińska A; Lejkowska R; Duchnik M; Rogińska D; Kawa M; Wiszniewska B
    Klin Oczna; 2014; 116(1):11-5. PubMed ID: 25137914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of optic nerve head configurations of superior segmental optic hypoplasia by spectral-domain optical coherence tomography.
    Hayashi K; Tomidokoro A; Konno S; Mayama C; Aihara M; Araie M
    Br J Ophthalmol; 2010 Jun; 94(6):768-72. PubMed ID: 20508053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of glaucomatous progression by spectral-domain optical coherence tomography.
    Na JH; Sung KR; Lee JR; Lee KS; Baek S; Kim HK; Sohn YH
    Ophthalmology; 2013 Jul; 120(7):1388-95. PubMed ID: 23474248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intra and inter-user reliability of central corneal thickness measurements obtained in healthy feline eyes using a portable spectral-domain optical coherence tomography device.
    Alario AF; Pirie CG
    Vet Ophthalmol; 2013 Nov; 16(6):446-50. PubMed ID: 23356722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of corneal power on circumpapillary retinal nerve fiber layer and optic nerve head measurements by spectral-domain optical coherence tomography.
    Hirasawa K; Shoji N
    Int J Ophthalmol; 2017; 10(9):1385-1391. PubMed ID: 28944197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biometric measurement of the mouse eye using optical coherence tomography with focal plane advancement.
    Zhou X; Xie J; Shen M; Wang J; Jiang L; Qu J; Lu F
    Vision Res; 2008 Apr; 48(9):1137-43. PubMed ID: 18346775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images.
    van der Schoot J; Vermeer KA; de Boer JF; Lemij HG
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2424-30. PubMed ID: 22427540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of the use of spectral domain optical coherence tomography (SD-OCT) for evaluation of the healthy and pathological cornea in dogs and cats.
    Famose F
    Vet Ophthalmol; 2014 Jan; 17(1):12-22. PubMed ID: 23356688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interocular symmetry in retinal and optic nerve parameters in children as measured by spectral domain optical coherence tomography.
    Al-Haddad C; Antonios R; Tamim H; Noureddin B
    Br J Ophthalmol; 2014 Apr; 98(4):502-6. PubMed ID: 24393664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of optic nerve head topographic measurements by Stratus OCT in patients with macrodiscs and normal-sized healthy discs.
    Onmez FE; Satana B; Altan C; Basarir B; Demirok A
    J Glaucoma; 2014; 23(8):e152-6. PubMed ID: 24240877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography.
    Nakano N; Hangai M; Nakanishi H; Mori S; Nukada M; Kotera Y; Ikeda HO; Nakamura H; Nonaka A; Yoshimura N
    Ophthalmology; 2011 Dec; 118(12):2414-26. PubMed ID: 21924499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice.
    Gabriele ML; Ishikawa H; Schuman JS; Bilonick RA; Kim J; Kagemann L; Wollstein G
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6519-23. PubMed ID: 20574022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation.
    Fortune B; Choe TE; Reynaud J; Hardin C; Cull GA; Burgoyne CF; Wang L
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6651-61. PubMed ID: 21730343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry.
    Strom AR; Cortés DE; Rasmussen CA; Thomasy SM; McIntyre K; Lee SF; Kass PH; Mannis MJ; Murphy CJ
    Vet Ophthalmol; 2016 Jan; 19(1):50-6. PubMed ID: 25676065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.