These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24825769)

  • 1. Structural insights into substrate and coenzyme preference by SDR family protein Gox2253 from Gluconobater oxydans.
    Yin B; Cui D; Zhang L; Jiang S; Machida S; Yuan YA; Wei D
    Proteins; 2014 Nov; 82(11):2925-35. PubMed ID: 24825769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H).
    Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D
    FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of aldehyde reductases from Gluconobacter oxydans 621H.
    Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1025-31. PubMed ID: 19644687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.
    Richter N; Breicha K; Hummel W; Niefind K
    J Mol Biol; 2010 Dec; 404(3):353-62. PubMed ID: 20887732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family.
    Tanaka N; Nonaka T; Nakanishi M; Deyashiki Y; Hara A; Mitsui Y
    Structure; 1996 Jan; 4(1):33-45. PubMed ID: 8805511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of short-chain dehydrogenase Gox2181 for altered coenzyme specificity.
    Cui D; Zhang L; Yao Z; Liu X; Lin J; Yuan YA; Wei D
    J Biotechnol; 2013 Sep; 167(4):386-92. PubMed ID: 23916946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of l-sorbose reductase from Gluconobacter frateurii complexed with NADPH and l-sorbose.
    Kubota K; Nagata K; Okai M; Miyazono K; Soemphol W; Ohtsuka J; Yamamura A; Saichana N; Toyama H; Matsushita K; Tanokura M
    J Mol Biol; 2011 Apr; 407(4):543-55. PubMed ID: 21277857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity.
    Schlieben NH; Niefind K; Müller J; Riebel B; Hummel W; Schomburg D
    J Mol Biol; 2005 Jun; 349(4):801-13. PubMed ID: 15896805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases.
    Iorgu AI; Hedison TM; Hay S; Scrutton NS
    FEBS J; 2019 Aug; 286(16):3117-3128. PubMed ID: 31033202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant.
    Tomita T; Fushinobu S; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2006 Aug; 347(2):502-8. PubMed ID: 16828705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans.
    Yin B; Deng J; Lim L; Yuan YA; Wei D
    Biosci Biotechnol Biochem; 2015; 79(3):410-21. PubMed ID: 25561169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
    Tanaka N; Nonaka T; Tanabe T; Yoshimoto T; Tsuru D; Mitsui Y
    Biochemistry; 1996 Jun; 35(24):7715-30. PubMed ID: 8672472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans.
    Richter N; Gröger H; Hummel W
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):79-89. PubMed ID: 20717668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of monkey dimeric dihydrodiol dehydrogenase in complex with isoascorbic acid.
    Carbone V; Sumii R; Ishikura S; Asada Y; Hara A; El-Kabbani O
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):532-42. PubMed ID: 18453689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution.
    Charron C; Talfournier F; Isupov MN; Littlechild JA; Branlant G; Vitoux B; Aubry A
    J Mol Biol; 2000 Mar; 297(2):481-500. PubMed ID: 10715215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of archaeal Rib7 and eubacterial RibG reductases in riboflavin biosynthesis: Substrate specificity and cofactor preference.
    Chen SC; Yen TM; Chang TH; Liaw SH
    Biochem Biophys Res Commun; 2018 Sep; 503(1):195-201. PubMed ID: 29864427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.