BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 24825865)

  • 1. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.
    Kiel MJ; Velusamy T; Rolland D; Sahasrabuddhe AA; Chung F; Bailey NG; Schrader A; Li B; Li JZ; Ozel AB; Betz BL; Miranda RN; Medeiros LJ; Zhao L; Herling M; Lim MS; Elenitoba-Johnson KS
    Blood; 2014 Aug; 124(9):1460-72. PubMed ID: 24825865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia.
    López C; Bergmann AK; Paul U; Murga Penas EM; Nagel I; Betts MJ; Johansson P; Ritgen M; Baumann T; Aymerich M; Jayne S; Russell RB; Campo E; Dyer MJ; Dürig J; Siebert R
    Br J Haematol; 2016 Apr; 173(2):265-73. PubMed ID: 26917488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-Cell Prolymphocytic Leukemia With t(X;14)(q28;q11.2): A Clinicopathologic Study of 15 Cases.
    Hu Z; Medeiros LJ; Xu M; Yuan J; Peker D; Shao L; Tang Z; Mai B; Thakral B; Rios A; Hu S; Wang W
    Am J Clin Pathol; 2023 Apr; 159(4):325-336. PubMed ID: 36883805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker.
    Stengel A; Kern W; Zenger M; Perglerová K; Schnittger S; Haferlach T; Haferlach C
    Genes Chromosomes Cancer; 2016 Jan; 55(1):82-94. PubMed ID: 26493028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia.
    Bergmann AK; Schneppenheim S; Seifert M; Betts MJ; Haake A; Lopez C; Maria Murga Penas E; Vater I; Jayne S; Dyer MJ; Schrappe M; Dührsen U; Ammerpohl O; Russell RB; Küppers R; Dürig J; Siebert R
    Genes Chromosomes Cancer; 2014 Apr; 53(4):309-16. PubMed ID: 24446122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia.
    Johansson P; Klein-Hitpass L; Choidas A; Habenberger P; Mahboubi B; Kim B; Bergmann A; Scholtysik R; Brauser M; Lollies A; Siebert R; Zenz T; Dührsen U; Küppers R; Dürig J
    Blood Cancer J; 2018 Jan; 8(1):11. PubMed ID: 29352181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling.
    Andersson EI; Pützer S; Yadav B; Dufva O; Khan S; He L; Sellner L; Schrader A; Crispatzu G; Oleś M; Zhang H; Adnan-Awad S; Lagström S; Bellanger D; Mpindi JP; Eldfors S; Pemovska T; Pietarinen P; Lauhio A; Tomska K; Cuesta-Mateos C; Faber E; Koschmieder S; Brümmendorf TH; Kytölä S; Savolainen ER; Siitonen T; Ellonen P; Kallioniemi O; Wennerberg K; Ding W; Stern MH; Huber W; Anders S; Tang J; Aittokallio T; Zenz T; Herling M; Mustjoki S
    Leukemia; 2018 Mar; 32(3):774-787. PubMed ID: 28804127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia.
    Bellanger D; Jacquemin V; Chopin M; Pierron G; Bernard OA; Ghysdael J; Stern MH
    Leukemia; 2014 Feb; 28(2):417-9. PubMed ID: 24048415
    [No Abstract]   [Full Text] [Related]  

  • 9. Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia.
    Tian S; Zhang H; Zhang P; Kalmbach M; Lee JH; Ordog T; Hampel PJ; Call TG; Witzig TE; Kay NE; Klee EW; Slager SL; Yan H; Ding W
    Sci Rep; 2021 Apr; 11(1):8318. PubMed ID: 33859327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined use of tofacitinib (pan-JAK inhibitor) and ruxolitinib (a JAK1/2 inhibitor) for refractory T-cell prolymphocytic leukemia (T-PLL) with a JAK3 mutation.
    Gomez-Arteaga A; Margolskee E; Wei MT; van Besien K; Inghirami G; Horwitz S
    Leuk Lymphoma; 2019 Jul; 60(7):1626-1631. PubMed ID: 30997845
    [No Abstract]   [Full Text] [Related]  

  • 11. BH3 profiling identifies ruxolitinib as a promising partner for venetoclax to treat T-cell prolymphocytic leukemia.
    Herbaux C; Kornauth C; Poulain S; Chong SJF; Collins MC; Valentin R; Hackett L; Tournilhac O; Lemonnier F; Dupuis J; Daniel A; Tomowiak C; Laribi K; Renaud L; Roos-Weil D; Rossi C; Van Den Neste E; Leyronnas C; Merabet F; Malfuson JV; Tiab M; Ysebaert L; Ng S; Morschhauser F; Staber PB; Davids MS
    Blood; 2021 Jun; 137(25):3495-3506. PubMed ID: 33598678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL.
    Schrader A; Crispatzu G; Oberbeck S; Mayer P; Pützer S; von Jan J; Vasyutina E; Warner K; Weit N; Pflug N; Braun T; Andersson EI; Yadav B; Riabinska A; Maurer B; Ventura Ferreira MS; Beier F; Altmüller J; Lanasa M; Herling CD; Haferlach T; Stilgenbauer S; Hopfinger G; Peifer M; Brümmendorf TH; Nürnberg P; Elenitoba-Johnson KSJ; Zha S; Hallek M; Moriggl R; Reinhardt HC; Stern MH; Mustjoki S; Newrzela S; Frommolt P; Herling M
    Nat Commun; 2018 Feb; 9(1):697. PubMed ID: 29449575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in PIGA cause a CD52-/GPI-anchor-deficient phenotype complicating alemtuzumab treatment in T-cell prolymphocytic leukemia.
    Johansson P; Klein-Hitpass L; Röth A; Möllmann M; Reinhardt HC; Dührsen U; Dürig J
    Eur J Haematol; 2020 Dec; 105(6):786-796. PubMed ID: 32875608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers.
    Jeong EG; Kim MS; Nam HK; Min CK; Lee S; Chung YJ; Yoo NJ; Lee SH
    Clin Cancer Res; 2008 Jun; 14(12):3716-21. PubMed ID: 18559588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JAK/STAT-Activating Genomic Alterations Are a Hallmark of T-PLL.
    Wahnschaffe L; Braun T; Timonen S; Giri AK; Schrader A; Wagle P; Almusa H; Johansson P; Bellanger D; López C; Haferlach C; Stern MH; Dürig J; Siebert R; Mustjoki S; Aittokallio T; Herling M
    Cancers (Basel); 2019 Nov; 11(12):. PubMed ID: 31766351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome profiling revealed the activation of IL2RG/JAK3/STAT5 in peripheral T‑cell lymphoma expressing the ITK‑SYK fusion gene.
    Zhang LL; Pan HX; Wang YX; Guo T; Liu L
    Int J Oncol; 2019 Nov; 55(5):1077-1089. PubMed ID: 31545408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the ATM gene in T-cell prolymphocytic leukemias.
    Stoppa-Lyonnet D; Soulier J; Laugé A; Dastot H; Garand R; Sigaux F; Stern MH
    Blood; 1998 May; 91(10):3920-6. PubMed ID: 9573030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma.
    Koo GC; Tan SY; Tang T; Poon SL; Allen GE; Tan L; Chong SC; Ong WS; Tay K; Tao M; Quek R; Loong S; Yeoh KW; Yap SP; Lee KA; Lim LC; Tan D; Goh C; Cutcutache I; Yu W; Ng CC; Rajasegaran V; Heng HL; Gan A; Ong CK; Rozen S; Tan P; Teh BT; Lim ST
    Cancer Discov; 2012 Jul; 2(7):591-7. PubMed ID: 22705984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells.
    Lin JX; Mietz J; Modi WS; John S; Leonard WJ
    J Biol Chem; 1996 May; 271(18):10738-44. PubMed ID: 8631883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.