These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24827004)

  • 1. Large-scale, solution-phase growth of semiconductor nanocrystals into ultralong one-dimensional arrays and study of their electrical properties.
    Ma Y; Xue M; Shi J; Tan Y
    Nanoscale; 2014 Jun; 6(12):6828-36. PubMed ID: 24827004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence.
    Zhang Y; Dai Q; Li X; Liang J; Colvin VL; Wang Y; Yu WW
    Langmuir; 2011 Aug; 27(15):9583-7. PubMed ID: 21699236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots.
    Moh SH; Kulkarni A; San BH; Lee JH; Kim D; Park KS; Lee MH; Kim T; Kim KK
    Nanoscale; 2016 Jan; 8(4):1921-5. PubMed ID: 26755346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-based stoichiometric control over charge transport in nanocrystalline CdSe devices.
    Kim DK; Fafarman AT; Diroll BT; Chan SH; Gordon TR; Murray CB; Kagan CR
    ACS Nano; 2013 Oct; 7(10):8760-70. PubMed ID: 24047327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and Electrical Characterization of Hybrid Core/Shell InAs/CdSe Nanowires.
    Kaladzhian M; von den Driesch N; Demarina N; Povstugar I; Zimmermann E; Jansen MM; Bae JH; Krause C; Bennemann B; Grützmacher D; Schäpers T; Pawlis A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):11035-11042. PubMed ID: 38377460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Dielectric Environment on Doping Efficiency in Colloidal PbSe Nanostructures.
    Zhao Q; Zhao T; Guo J; Chen W; Zhang M; Kagan CR
    ACS Nano; 2018 Feb; 12(2):1313-1320. PubMed ID: 29346726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors.
    Zou X; Liu X; Wang C; Jiang Y; Wang Y; Xiao X; Ho JC; Li J; Jiang C; Xiong Q; Liao L
    ACS Nano; 2013 Jan; 7(1):804-10. PubMed ID: 23228028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds.
    Kim YJ; Cho CH; Paek K; Jo M; Park MK; Lee NE; Kim YJ; Kim BJ; Lee E
    J Am Chem Soc; 2014 Feb; 136(7):2767-74. PubMed ID: 24479369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals.
    Groeneveld E; Witteman L; Lefferts M; Ke X; Bals S; Van Tendeloo G; Donega Cde M
    ACS Nano; 2013 Sep; 7(9):7913-30. PubMed ID: 23941394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires.
    Wang B; Stelzner T; Dirawi R; Assad O; Shehada N; Christiansen S; Haick H
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4251-8. PubMed ID: 22817278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphine-free synthesis from 1D Pb(OH)Cl nanowires to 0D and 1D PbSe nanocrystals.
    Shen H; Li J; Shang H; Niu J; Xu W; Wang H; Guo F; Li LS
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10331-6. PubMed ID: 24066872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Ultra-Short Channel Field-Effect Transistor Using Solution-Processable Colloidal Nanocrystals.
    Fan X; Kneppe D; Sayevich V; Kleemann H; Tahn A; Leo K; Lesnyak V; Eychmüller A
    J Phys Chem Lett; 2019 Jul; 10(14):4025-4031. PubMed ID: 31259561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.
    Rawalekar S; Kaniyankandy S; Verma S; Ghosh HN
    Chemphyschem; 2011 Jun; 12(9):1729-35. PubMed ID: 21567706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoassisted synthesis of CdSe and core-shell CdSe/CdS quantum dots.
    Lin YW; Hsieh MM; Liu CP; Chang HT
    Langmuir; 2005 Jan; 21(2):728-34. PubMed ID: 15641847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally robust and blinking suppressed core/graded-shell CdSe/CdSe1-xSx/CdS 'giant' multishell semiconductor nanocrystals.
    Lau PC; Zhu Z; Norwood RA; Mansuripur M; Peyghambarian N
    Nanotechnology; 2013 Nov; 24(47):475705. PubMed ID: 24177005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.
    Liu S; Zhang N; Tang ZR; Xu YJ
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6378-85. PubMed ID: 23131118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape.
    Zhu H; Lian T
    J Am Chem Soc; 2012 Jul; 134(27):11289-97. PubMed ID: 22702343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.
    Ghosh R; Giri PK; Imakita K; Fujii M
    Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-based II-VI core/shell nanowire heterostructures.
    Goebl JA; Black RW; Puthussery J; Giblin J; Kosel TH; Kuno M
    J Am Chem Soc; 2008 Nov; 130(44):14822-33. PubMed ID: 18847191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.