These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24827320)

  • 1. Heat conduction, and the lack thereof, in time-reversible dynamical systems: generalized Nosé-Hoover oscillators with a temperature gradient.
    Sprott JC; Hoover WG; Hoover CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042914. PubMed ID: 24827320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonic oscillators in the Nosé-Hoover environment.
    Golo VL; Salnikov VN; Shaitan KV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046130. PubMed ID: 15600483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalization of Nose and Nose-hoover isothermal dynamics.
    Branka AC; Wojciechowski KW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3281-92. PubMed ID: 11088826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulgac-Kusnezov-Nosé-Hoover thermostats.
    Sergi A; Ezra GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036705. PubMed ID: 20365902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium temperature and thermometry in heat-conducting phi4 models.
    Hoover WG; Hoover CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041104. PubMed ID: 18517575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids.
    Li Z; Xiong S; Sievers C; Hu Y; Fan Z; Wei N; Bao H; Chen S; Donadio D; Ala-Nissila T
    J Chem Phys; 2019 Dec; 151(23):234105. PubMed ID: 31864248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A configurational temperature Nosé-Hoover thermostat.
    Braga C; Travis KP
    J Chem Phys; 2005 Oct; 123(13):134101. PubMed ID: 16223269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deterministic thermostat for controlling temperature using all degrees of freedom.
    Patra PK; Bhattacharya B
    J Chem Phys; 2014 Feb; 140(6):064106. PubMed ID: 24527899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Nosé-Hoover thermostat: molecular dynamics in quasi-thermodynamic equilibrium.
    Sidler D; Riniker S
    Phys Chem Chem Phys; 2019 Mar; 21(11):6059-6070. PubMed ID: 30810120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalies and absence of local equilibrium, and universality, in one-dimensional particles systems.
    Giberti C; Rondoni L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041115. PubMed ID: 21599123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ergodic configurational thermostat using selective control of higher order temperatures.
    Patra PK; Bhattacharya B
    J Chem Phys; 2015 May; 142(19):194103. PubMed ID: 26001443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonergodicity of the Nose-Hoover chain thermostat in computationally achievable time.
    Patra PK; Bhattacharya B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043304. PubMed ID: 25375620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature control algorithms in dual control volume grand canonical molecular dynamics simulations of hydrogen diffusion in palladium.
    Sun J; Zhang LT
    J Chem Phys; 2007 Oct; 127(16):164721. PubMed ID: 17979385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized dynamical thermostating technique.
    Laird BB; Leimkuhler BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016704. PubMed ID: 12935284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zeroth Law investigation on the logarithmic thermostat.
    Patra PK; Bhattacharya B
    Sci Rep; 2018 Aug; 8(1):11670. PubMed ID: 30076324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal dimension of steady nonequilibrium flows.
    Hoover WG; Posch HA; Hoover CG
    Chaos; 1992 Apr; 2(2):245-252. PubMed ID: 12779970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat.
    Stoyanov SD; Groot RD
    J Chem Phys; 2005 Mar; 122(11):114112. PubMed ID: 15836206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint.
    Bright JN; Evans DJ; Searles DJ
    J Chem Phys; 2005 May; 122(19):194106. PubMed ID: 16161562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.
    Page AJ; Isomoto T; Knaup JM; Irle S; Morokuma K
    J Chem Theory Comput; 2012 Nov; 8(11):4019-28. PubMed ID: 26605569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Nosé-Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics.
    Coughtrie DJ; Tew DP
    J Chem Phys; 2014 May; 140(19):194106. PubMed ID: 24852529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.