These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24827323)
1. Order and chaos in the rotation and revolution of two massive line segments. Blaikie A; Saines AD; Schmitthenner M; Lankford M; Pasteur RD; Lindner JF Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042917. PubMed ID: 24827323 [TBL] [Abstract][Full Text] [Related]
2. Order and chaos in the rotation and revolution of a line segment and a point mass. Lindner JF; Lynn J; King FW; Logue A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036208. PubMed ID: 20365833 [TBL] [Abstract][Full Text] [Related]
3. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems. Kobayashi MU; Saiki Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022904. PubMed ID: 25353542 [TBL] [Abstract][Full Text] [Related]
4. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of chaotic driving: rotation in the restricted three-body problem. Vanyó J; Tél T Chaos; 2007 Mar; 17(1):013113. PubMed ID: 17411249 [TBL] [Abstract][Full Text] [Related]
6. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
7. Analysis of unstable periodic orbits and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous map. Rajpathak B; Pillai HK; Bandyopadhyay S Chaos; 2015 Oct; 25(10):103101. PubMed ID: 26520067 [TBL] [Abstract][Full Text] [Related]
8. Embedding dynamics for round-off errors near a periodic orbit. Lowenstein JH; Vivaldi F Chaos; 2000 Dec; 10(4):747-755. PubMed ID: 12779424 [TBL] [Abstract][Full Text] [Related]
9. Using periodic orbits to compute chaotic transport rates between resonance zones. Sattari S; Mitchell KA Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324 [TBL] [Abstract][Full Text] [Related]
10. Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials. Sideris IV; Kandrup HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066203. PubMed ID: 12188811 [TBL] [Abstract][Full Text] [Related]
11. Optimal periodic orbits of continuous time chaotic systems. Yang TH; Hunt BR; Ott E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659 [TBL] [Abstract][Full Text] [Related]
13. Geometric determination of classical actions of heteroclinic and unstable periodic orbits. Li J; Tomsovic S Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367 [TBL] [Abstract][Full Text] [Related]
14. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
15. Transient dynamics and multistability in two electrically interacting FitzHugh-Nagumo neurons. Santana L; da Silva RM; Albuquerque HA; Manchein C Chaos; 2021 May; 31(5):053107. PubMed ID: 34240942 [TBL] [Abstract][Full Text] [Related]
16. Phase space structure and chaotic scattering in near-integrable systems. Koch BP; Bruhn B Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051 [TBL] [Abstract][Full Text] [Related]
17. Attractor switching by neural control of chaotic neurodynamics. Pasemann F; Stollenwerk N Network; 1998 Nov; 9(4):549-61. PubMed ID: 10221579 [TBL] [Abstract][Full Text] [Related]
18. Condensation in the phase space and network topology during transition from chaos to order in turbulent thermoacoustic systems. Tandon S; Sujith RI Chaos; 2021 Apr; 31(4):043126. PubMed ID: 34251230 [TBL] [Abstract][Full Text] [Related]
19. Stability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ. Karabacak Ö; Alikoç B; Atay FM Chaos; 2016 Sep; 26(9):093101. PubMed ID: 27781450 [TBL] [Abstract][Full Text] [Related]
20. Exact relations between homoclinic and periodic orbit actions in chaotic systems. Li J; Tomsovic S Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]