BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24827344)

  • 1. Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.
    Lapa MF; Hughes TL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043019. PubMed ID: 24827344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swimming of a model ciliate near an air-liquid interface.
    Wang S; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063010. PubMed ID: 23848775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General aspects of hydrodynamic interactions between three-sphere low-Reynolds-number swimmers.
    Farzin M; Ronasi K; Najafi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061914. PubMed ID: 23005134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biomechanical review of the techniques used to estimate or measure resistive forces in swimming.
    Sacilotto GB; Ball N; Mason BR
    J Appl Biomech; 2014 Feb; 30(1):119-27. PubMed ID: 24676518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
    Daghooghi M; Borazjani I
    Bioinspir Biomim; 2015 Oct; 10(5):056018. PubMed ID: 26447493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic force patterns of an undulatory microswimmer.
    Schulman RD; Backholm M; Ryu WS; Dalnoki-Veress K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):050701. PubMed ID: 25353731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collision of microswimmers in a viscous fluid.
    Potomkin M; Gyrya V; Aranson I; Berlyand L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053005. PubMed ID: 23767618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic resonance on the transverse displacement of swimmers in an oscillatory shear flow.
    Guzmán-Lastra F; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):037301. PubMed ID: 23031055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional CFD analysis of the hand and forearm in swimming.
    Marinho DA; Silva AJ; Reis VM; Barbosa TM; Vilas-Boas JP; Alves FB; Machado L; Rouboa AI
    J Appl Biomech; 2011 Feb; 27(1):74-80. PubMed ID: 21451185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed of a swimming sheet in Newtonian and viscoelastic fluids.
    Dasgupta M; Liu B; Fu HC; Berhanu M; Breuer KS; Powers TR; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013015. PubMed ID: 23410434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsteady flow phenomena in human undulatory swimming: a numerical approach.
    Pacholak S; Hochstein S; Rudert A; Brücker C
    Sports Biomech; 2014 Jun; 13(2):176-94. PubMed ID: 25123002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple swimmer at low Reynolds number: three linked spheres.
    Najafi A; Golestanian R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062901. PubMed ID: 15244646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulence model choice for the calculation of drag forces when using the CFD method.
    Zaïdi H; Fohanno S; Taïar R; Polidori G
    J Biomech; 2010 Feb; 43(3):405-11. PubMed ID: 19889420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-amplitude undulatory swimming near a wall.
    Fernández-Prats R; Raspa V; Thiria B; Huera-Huarte F; Godoy-Diana R
    Bioinspir Biomim; 2015 Jan; 10(1):016003. PubMed ID: 25561330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical streamline patterns at swimmer's surface using RANS equations.
    Arfaoui A; Popa CV; Taïar R; Polidori G; Fohanno S
    J Appl Biomech; 2012 Jul; 28(3):279-83. PubMed ID: 21975086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rehinging biflagellar locomotion in a viscous fluid.
    Spagnolie SE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046323. PubMed ID: 19905452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.