These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24827344)

  • 21. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.
    Martin S; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small-amplitude swimmers can self-propel faster in viscoelastic fluids.
    Riley EE; Lauga E
    J Theor Biol; 2015 Oct; 382():345-55. PubMed ID: 26163369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal propulsive flapping in Stokes flows.
    Was L; Lauga E
    Bioinspir Biomim; 2014 Mar; 9(1):016001. PubMed ID: 24343130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluid simulation with articulated bodies.
    Kwatra N; Wojtan C; Carlson M; Essa I; Mucha PJ; Turk G
    IEEE Trans Vis Comput Graph; 2010; 16(1):70-80. PubMed ID: 19910662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wave drag on human swimmers.
    Vennell R; Pease D; Wilson B
    J Biomech; 2006; 39(4):664-71. PubMed ID: 16439236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Swimming by reciprocal motion at low Reynolds number.
    Qiu T; Lee TC; Mark AG; Morozov KI; Münster R; Mierka O; Turek S; Leshansky AM; Fischer P
    Nat Commun; 2014 Nov; 5():5119. PubMed ID: 25369018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency of fish propulsion.
    Maertens AP; Triantafyllou MS; Yue DK
    Bioinspir Biomim; 2015 Jul; 10(4):046013. PubMed ID: 26226349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Buoyancy is the primary source of generating bodyroll in front-crawl swimming.
    Yanai T
    J Biomech; 2004 May; 37(5):605-12. PubMed ID: 15046989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Realization of a push-me-pull-you swimmer at low Reynolds numbers.
    Silverberg O; Demir E; Mishler G; Hosoume B; Trivedi N; Tisch C; Plascencia D; Pak OS; Araci IE
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32620000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.
    Blake RW
    Bioinspir Biomim; 2009 Mar; 4(1):015004. PubMed ID: 19258689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Force and torque-free helical tail robot to study low Reynolds number micro-organism swimming.
    Das A; Styslinger M; Harris DM; Zenit R
    Rev Sci Instrum; 2022 Apr; 93(4):044103. PubMed ID: 35489898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A formulation for calculating the translational velocity of a vortex ring or pair.
    Mohseni K
    Bioinspir Biomim; 2006 Dec; 1(4):S57-64. PubMed ID: 17671319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of winter swimming on the rheological properties of blood.
    Teległów A; Dąbrowski Z; Marchewka A; Tyka A; Krawczyk M; Głodzik J; Szyguła Z; Mleczko E; Bilski J; Tyka A; Tabarowski Z; Czepiel J; Filar-Mierzwa K
    Clin Hemorheol Microcirc; 2014; 57(2):119-27. PubMed ID: 24577381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.
    Polidori G; Taïar R; Fohanno S; Mai TH; Lodini A
    J Biomech; 2006; 39(13):2535-41. PubMed ID: 16153653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of chiral cell shape to ensure highly directional swimming in trypanosomes.
    Wheeler RJ
    PLoS Comput Biol; 2017 Jan; 13(1):e1005353. PubMed ID: 28141804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.
    Pawaskar SS; Fisher J; Jin Z
    J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient shear banding in time-dependent fluids.
    Illa X; Puisto A; Lehtinen A; Mohtaschemi M; Alava MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022307. PubMed ID: 23496516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Swimming near the substrate: a simple robotic model of stingray locomotion.
    Blevins E; Lauder GV
    Bioinspir Biomim; 2013 Mar; 8(1):016005. PubMed ID: 23318215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonmodal stability in Hagen-Poiseuille flow of a shear thinning fluid.
    Liu R; Liu QS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066318. PubMed ID: 23005217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.