These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2482736)

  • 1. Non-invasive detection of protein metabolism in vivo by n.m.r. spectroscopy. Application of a novel 19F-containing residualizing label.
    Daugherty A; Becker NN; Scherrer LA; Sobel BE; Ackerman JJ; Baynes JW; Thorpe SR
    Biochem J; 1989 Dec; 264(3):829-35. PubMed ID: 2482736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the accumulation and degradation of beta-very-low-density lipoproteins in vivo using a 19F-containing residualizing label and n.m.r. spectroscopy.
    Meeh LA; Ackerman JJ; Thorpe SR; Daugherty A
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):785-92. PubMed ID: 1417737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescent residualizing label for studies on protein uptake and catabolism in vivo and in vitro.
    Maxwell JL; Terracio L; Borg TK; Baynes JW; Thorpe SR
    Biochem J; 1990 Apr; 267(1):155-62. PubMed ID: 1691636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 125I-glycoconjugate labels for identifying sites of protein catabolism in vivo: effect of structure and chemistry of coupling to protein on label entrapment in cells after protein degradation.
    Strobel JL; Baynes JW; Thorpe SR
    Arch Biochem Biophys; 1985 Aug; 240(2):635-45. PubMed ID: 2411222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-mediated introduction of pepstatin-asialofetuin conjugate into lysosomes of rat hepatocytes.
    Furuno K; Miwa N; Kato K
    J Biochem; 1983 Jan; 93(1):249-56. PubMed ID: 6188752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inulin-125I-tyramine, an improved residualizing label for studies on sites of catabolism of circulating proteins.
    Maxwell JL; Baynes JW; Thorpe SR
    J Biol Chem; 1988 Oct; 263(28):14122-7. PubMed ID: 2459117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.
    Cawley DB; Simpson DL; Herschman HR
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3383-7. PubMed ID: 6167984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of asialoglycoproteins in cultured rat hepatocytes: evidence for receptor mediated uptake and degradation which is not feed-back regulated.
    Drevon CA; Tolleshaug H; Carlander B; Berg T
    Int J Biochem; 1983; 15(6):827-33. PubMed ID: 6190689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sites of catabolism of murine monomeric IgA.
    Moldoveanu Z; Epps JM; Thorpe SR; Mestecky J
    J Immunol; 1988 Jul; 141(1):208-13. PubMed ID: 2454258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 17 alpha-ethinylestradiol increases transcytosis of asialoglycoproteins in rat liver.
    Burgess JW; Stanley KK
    J Biol Chem; 1994 Feb; 269(5):3482-8. PubMed ID: 7508915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MION-ASF: biokinetics of an MR receptor agent.
    Schaffer BK; Linker C; Papisov M; Tsai E; Nossiff N; Shibata T; Bogdanov A; Brady TJ; Weissleder R
    Magn Reson Imaging; 1993; 11(3):411-7. PubMed ID: 7685055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic liver imaging with iron oxide agents: effects of size and biodistribution on contrast.
    Mandeville JB; Moore J; Chesler DA; Garrido L; Weissleder R; Weisskoff RM
    Magn Reson Med; 1997 Jun; 37(6):885-90. PubMed ID: 9178240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leupeptin as a tool for the detection of the sites of catabolism of rat high-density lipoprotein apolipoproteins A-I and E.
    van 't Hooft FM; Dallinga-Thie GM; van Tol A
    Biochim Biophys Acta; 1985 Mar; 834(1):75-84. PubMed ID: 2579677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of asialofetuin endocytosed by rat liver.
    Wattiaux R; Misquith S; Wattiaux-De Coninck S; Dubois F
    Biochem Biophys Res Commun; 1989 Jan; 158(1):313-8. PubMed ID: 2463836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of endogenous proteins and internalized asialofetuin in primary cultured hepatocytes of rats.
    Kato H; Takahashi S; Takenaka A; Funabiki R; Noguchi T; Naito H
    Int J Biochem; 1989; 21(5):483-95. PubMed ID: 2474466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, intracellular transport, and degradation of polyethylene glycol-modified asialofetuin in hepatocytes.
    Roseng L; Tolleshaug H; Berg T
    J Biol Chem; 1992 Nov; 267(32):22987-93. PubMed ID: 1385410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of tegafur in rat liver observed by in vivo 19F magnetic resonance spectroscopy and chromatography.
    Harada M; Nishitani H; Koga K; Miura I; Umeno Y
    Jpn J Cancer Res; 1992 Apr; 83(4):387-91. PubMed ID: 1506273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective incorporation of asialofetuin into hepatocyte of rat.
    Aramaki Y; Inaba A; Tsuchiya S
    Biopharm Drug Dispos; 1985; 6(4):389-400. PubMed ID: 2417637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for in vivo hepatic uptake of a galactose-terminated glycoprotein in fish (Salmo alpinus L.).
    Dannevig BH; Tolleshaug H; Berg T
    Biochim Biophys Acta; 1981 Nov; 677(3-4):501-5. PubMed ID: 6170347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of mitomycin C to the liver by the use of asialofetuin as a carrier.
    Kaneo Y; Tanaka T; Iguchi S
    Chem Pharm Bull (Tokyo); 1991 Apr; 39(4):999-1003. PubMed ID: 1716529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.