These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24827363)

  • 1. Numerical calculation of interaction forces between paramagnetic colloids in two-dimensional systems.
    Du D; Toffoletto F; Biswal SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043306. PubMed ID: 24827363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-mutual-dipolar model for rapid calculation of forces between paramagnetic colloids.
    Du D; Biswal SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033310. PubMed ID: 25314567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ray-theory approach to electrical-double-layer interactions.
    Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022307. PubMed ID: 25768505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forces acting on dielectric colloidal spheres at a water/nonpolar-fluid interface in an external electric field. 1. Uncharged particles.
    Danov KD; Kralchevsky PA
    J Colloid Interface Sci; 2013 Sep; 405():278-90. PubMed ID: 23768629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spheroidal harmonic expansions for the solution of Laplace's equation for a point source near a sphere.
    Majić MRA; Auguié B; Le Ru EC
    Phys Rev E; 2017 Mar; 95(3-1):033307. PubMed ID: 28415316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Background field removal by solving the Laplacian boundary value problem.
    Zhou D; Liu T; Spincemaille P; Wang Y
    NMR Biomed; 2014 Mar; 27(3):312-9. PubMed ID: 24395595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation.
    Hu J; Zhou X; Hu G
    Opt Express; 2009 Feb; 17(3):1308-20. PubMed ID: 19188959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of interparticle radiation force acting on rigid spheres in a standing wave.
    Sepehrirahnama S; Lim KM; Chau FS
    J Acoust Soc Am; 2015 May; 137(5):2614-22. PubMed ID: 25994694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of latex spheres using dielectrophoresis and fluid flow.
    Malnar B; Malyan B; Balachandran W; Cecelja F
    IEE Proc Nanobiotechnol; 2003 Nov; 150(2):66-9. PubMed ID: 16468933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical comparison between Maxwell stress method and equivalent multipole approach for calculation of the dielectrophoretic force in single-cell traps.
    Rosales C; Lim KM
    Electrophoresis; 2005 Jun; 26(11):2057-65. PubMed ID: 15841502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bipolar Janus particle assembly in microdevice.
    Hossan MR; Gopmandal PP; Dillon R; Dutta P
    Electrophoresis; 2015 Mar; 36(5):722-30. PubMed ID: 25475510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the extended RSA models in studies of particle deposition at partially covered surfaces.
    Weroński P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation boundary conditions for the numerical solution of the three-dimensional time-dependent Schrödinger equation with a localized interaction.
    Heinen M; Kull HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056709. PubMed ID: 19518595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and simulation of dielectrophoretic particle-particle interactions and assembly.
    Hossan MR; Dillon R; Roy AK; Dutta P
    J Colloid Interface Sci; 2013 Mar; 394():619-29. PubMed ID: 23348000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic concentrators with arbitrary geometries based on Laplace's equation.
    Yang C; Yang J; Huang M; Peng J; Niu W
    J Opt Soc Am A Opt Image Sci Vis; 2010 Sep; 27(9):1994-8. PubMed ID: 20808407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetophoresis, sedimentation, and diffusion of particles in concentrated magnetic fluids.
    Pshenichnikov AF; Elfimova EA; Ivanov AO
    J Chem Phys; 2011 May; 134(18):184508. PubMed ID: 21568522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use and Misuse of Laplace's Law in Ophthalmology.
    Chung CW; Girard MJ; Jan NJ; Sigal IA
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):236-45. PubMed ID: 26803799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition of spherical particles onto cylindrical solid surfaces. I. Numerical simulations.
    Gu Y; Li D
    J Colloid Interface Sci; 2002 Apr; 248(2):315-28. PubMed ID: 16290536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of capillary bridges between nanoscale particles.
    Dörmann M; Schmid HJ
    Langmuir; 2014 Feb; 30(4):1055-62. PubMed ID: 24417253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.