BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24827439)

  • 1. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.
    Lohbeck KT; Riebesell U; Reusch TB
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.
    Benner I; Diner RE; Lefebvre SC; Li D; Komada T; Carpenter EJ; Stillman JH
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20130049. PubMed ID: 23980248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi.
    Bach LT; Mackinder LCM; Schulz KG; Wheeler G; Schroeder DC; Brownlee C; Riebesell U
    New Phytol; 2013 Jul; 199(1):121-134. PubMed ID: 23496417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.
    Muller EB; Nisbet RM
    Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi.
    Feng Y; Roleda MY; Armstrong E; Summerfield TC; Law CS; Hurd CL; Boyd PW
    Glob Chang Biol; 2020 Oct; 26(10):5630-5645. PubMed ID: 32597547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-CO
    Vázquez V; León P; Gordillo FJL; Jiménez C; Concepción I; Mackenzie K; Bresnan E; Segovia M
    Microb Ecol; 2023 Jul; 86(1):127-143. PubMed ID: 35624343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores.
    Taylor AR; Chrachri A; Wheeler G; Goddard H; Brownlee C
    PLoS Biol; 2011 Jun; 9(6):e1001085. PubMed ID: 21713028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and CO2 enrichment.
    Fukuda SY; Suzuki Y; Shiraiwa Y
    Photosynth Res; 2014 Sep; 121(2-3):299-309. PubMed ID: 24500605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of elevated CO
    Lorenzo MR; Neale PJ; Sobrino C; León P; Vázquez V; Bresnan E; Segovia M
    J Phycol; 2019 Aug; 55(4):775-788. PubMed ID: 31090939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.
    Beaufort L; Probert I; de Garidel-Thoron T; Bendif EM; Ruiz-Pino D; Metzl N; Goyet C; Buchet N; Coupel P; Grelaud M; Rost B; Rickaby RE; de Vargas C
    Nature; 2011 Aug; 476(7358):80-3. PubMed ID: 21814280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods.
    Xu H; Liu H; Chen F; Zhang X; Zhang Z; Ma J; Pan K; Liu H
    Mar Environ Res; 2023 Nov; 192():106232. PubMed ID: 37866975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.
    Kottmeier DM; Rokitta SD; Rost B
    New Phytol; 2016 Jul; 211(1):126-37. PubMed ID: 26918275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoplankton calcification in a high-CO2 world.
    Iglesias-Rodriguez MD; Halloran PR; Rickaby RE; Hall IR; Colmenero-Hidalgo E; Gittins JR; Green DR; Tyrrell T; Gibbs SJ; von Dassow P; Rehm E; Armbrust EV; Boessenkool KP
    Science; 2008 Apr; 320(5874):336-40. PubMed ID: 18420926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.
    Holtz LM; Wolf-Gladrow D; Thoms S
    J Theor Biol; 2015 May; 372():192-204. PubMed ID: 25747776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The requirement for calcification differs between ecologically important coccolithophore species.
    Walker CE; Taylor AR; Langer G; Durak GM; Heath S; Probert I; Tyrrell T; Brownlee C; Wheeler GL
    New Phytol; 2018 Oct; 220(1):147-162. PubMed ID: 29916209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coccolithophore calcification response to past ocean acidification and climate change.
    O'Dea SA; Gibbs SJ; Bown PR; Young JR; Poulton AJ; Newsam C; Wilson PA
    Nat Commun; 2014 Nov; 5():5363. PubMed ID: 25399967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations.
    Lohbeck KT; Riebesell U; Collins S; Reusch TB
    Evolution; 2013 Jul; 67(7):1892-900. PubMed ID: 23815647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcification and ocean acidification: new insights from the coccolithophore Emiliania huxleyi.
    Beardall J; Raven JA
    New Phytol; 2013 Jul; 199(1):1-3. PubMed ID: 23713549
    [No Abstract]   [Full Text] [Related]  

  • 20. Responses of the Emiliania huxleyi proteome to ocean acidification.
    Jones BM; Iglesias-Rodriguez MD; Skipp PJ; Edwards RJ; Greaves MJ; Young JR; Elderfield H; O'Connor CD
    PLoS One; 2013; 8(4):e61868. PubMed ID: 23593500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.