These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24827585)
41. Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle. He YL; Wu YH; Quan FS; Liu YG; Zhang Y Genet Mol Res; 2013 Sep; 12(3):3398-406. PubMed ID: 24065681 [TBL] [Abstract][Full Text] [Related]
42. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Qian L; Tang M; Yang J; Wang Q; Cai C; Jiang S; Li H; Jiang K; Gao P; Ma D; Chen Y; An X; Li K; Cui W Sci Rep; 2015 Sep; 5():14435. PubMed ID: 26400270 [TBL] [Abstract][Full Text] [Related]
43. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Hitachi K; Nakatani M; Funasaki S; Hijikata I; Maekawa M; Honda M; Tsuchida K Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32120896 [TBL] [Abstract][Full Text] [Related]
44. The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria. Homolova K; Zavadakova P; Doktor TK; Schroeder LD; Kozich V; Andresen BS Hum Mutat; 2010 Apr; 31(4):437-44. PubMed ID: 20120036 [TBL] [Abstract][Full Text] [Related]
46. Sequence analysis of myostatin promoter in cattle. Crisà A; Marchitelli C; Savarese MC; Valentini A Cytogenet Genome Res; 2003; 102(1-4):48-52. PubMed ID: 14970678 [TBL] [Abstract][Full Text] [Related]
47. Genetic variability in the myostatin gene does not explain the muscle hypertrophy and clinical penetrance in myotonia congenita. Muniz VP; Senkevics AS; Zilbersztajn D; Gurgel-Giannetti J; Silva HC; Yamamoto LU; Pavanello RC; Pearson PL; Zatz M; Vainzof M Muscle Nerve; 2010 Mar; 41(3):427-8. PubMed ID: 19918890 [No Abstract] [Full Text] [Related]
48. The callipyge mutation and other genes that affect muscle hypertrophy in sheep. Cockett NE; Smit MA; Bidwell CA; Segers K; Hadfield TL; Snowder GD; Georges M; Charlier C Genet Sel Evol; 2005; 37 Suppl 1(Suppl 1):S65-81. PubMed ID: 15601596 [TBL] [Abstract][Full Text] [Related]
49. Spinal Muscular Atrophy in Blonde D'Aquitaine Calves Is Not Associated With FVT1 Gene Mutation. Cagnotti G; Cantile C; Chessa S; Sacchi P; D'Angelo A; Bellino C Front Vet Sci; 2020; 7():348. PubMed ID: 32714947 [TBL] [Abstract][Full Text] [Related]
50. Myostatin and its implications on animal breeding: a review. Bellinge RH; Liberles DA; Iaschi SP; O'brien PA; Tay GK Anim Genet; 2005 Feb; 36(1):1-6. PubMed ID: 15670124 [TBL] [Abstract][Full Text] [Related]
51. Correlation between estrogen plasma level and miRNAs in muscle of Piedmontese cattle. Martignani E; Miretti S; Vincenti L; Baratta M Domest Anim Endocrinol; 2019 Apr; 67():37-41. PubMed ID: 30690256 [TBL] [Abstract][Full Text] [Related]
52. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Odermatt A; Taschner PE; Khanna VK; Busch HF; Karpati G; Jablecki CK; Breuning MH; MacLennan DH Nat Genet; 1996 Oct; 14(2):191-4. PubMed ID: 8841193 [TBL] [Abstract][Full Text] [Related]
54. Induced dystrophin exon skipping in human muscle explants. McClorey G; Fall AM; Moulton HM; Iversen PL; Rasko JE; Ryan M; Fletcher S; Wilton SD Neuromuscul Disord; 2006 Oct; 16(9-10):583-90. PubMed ID: 16919955 [TBL] [Abstract][Full Text] [Related]
55. Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation. Mayer AK; Rohrschneider K; Strom TM; Glöckle N; Kohl S; Wissinger B; Weisschuh N Eur J Hum Genet; 2016 Mar; 24(3):459-62. PubMed ID: 26153215 [TBL] [Abstract][Full Text] [Related]
56. Rare intronic mutation between Exon 62 and 63 (c.9225-285A>G) of the dystrophin gene associated with atypical BMD phenotype. Schüssler SC; Gerhalter T; Abicht A; Müller-Felber W; Nagel AM; Trollmann R Neuromuscul Disord; 2020 Aug; 30(8):680-684. PubMed ID: 32669210 [TBL] [Abstract][Full Text] [Related]
57. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot. Suzuki H; Aoki Y; Kameyama T; Saito T; Masuda S; Tanihata J; Nagata T; Mayeda A; Takeda S; Tsukahara T Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27754374 [TBL] [Abstract][Full Text] [Related]
58. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass. Clark DL; Clark DI; Beever JE; Dilger AC J Anim Sci; 2015 May; 93(5):2546-58. PubMed ID: 26020349 [TBL] [Abstract][Full Text] [Related]
59. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5'-splice site mutation of human cathepsin A gene. Yamazaki N; Kanazawa K; Kimura M; Ike H; Shinomiya M; Tanaka S; Shinohara Y; Minakawa N; Itoh K; Takiguchi Y Gene; 2018 Nov; 677():41-48. PubMed ID: 30010039 [TBL] [Abstract][Full Text] [Related]
60. Novel small-eye allele in paired box gene 6 (Pax6) is caused by a point mutation in intron 7 and creates a new exon. Puk O; Yan X; Sabrautzki S; Fuchs H; Gailus-Durner V; Hrabě de Angelis M; Graw J Mol Vis; 2013; 19():877-84. PubMed ID: 23592925 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]