These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 2482766)

  • 21. On the competition between water, sodium ions, and spermine in binding to DNA: a molecular dynamics computer simulation study.
    Korolev N; Lyubartsev AP; Laaksonen A; Nordenskiöld L
    Biophys J; 2002 Jun; 82(6):2860-75. PubMed ID: 12023210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytoplasmic microinjection of immunoglobulin Gs recognizing RNA helices inhibits human cell growth.
    Zarling DA; Calhoun CJ; Feuerstein BG; Sena EP
    J Mol Biol; 1990 Jan; 211(1):147-60. PubMed ID: 2153833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The crystal structure of N(1)-[2-(2-amino-ethylamino)-ethyl]-ethane-1,2-diamine (polyamines) binding to the minor groove of d(CGCGCG)(2), hexamer at room temperature.
    Ohishi H; Suzuki K; Ohtsuchi M; Hakoshima T; Rich A
    FEBS Lett; 2002 Jul; 523(1-3):29-34. PubMed ID: 12123799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction between the Z-type DNA duplex and 1,3-propanediamine: crystal structure of d(CACGTG)2 at 1.2 A resolution.
    Narayana N; Shamala N; Ganesh KN; Viswamitra MA
    Biochemistry; 2006 Jan; 45(4):1200-11. PubMed ID: 16430216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution conformation of the (-)-cis-anti-benzo[a]pyrenyl-dG adduct opposite dC in a DNA duplex: intercalation of the covalently attached BP ring into the helix with base displacement of the modified deoxyguanosine into the major groove.
    Cosman M; Hingerty BE; Luneva N; Amin S; Geacintov NE; Broyde S; Patel DJ
    Biochemistry; 1996 Jul; 35(30):9850-63. PubMed ID: 8703959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulation study of oriented polyamine- and Na-DNA: sequence specific interactions and effects on DNA structure.
    Korolev N; Lyubartsev AP; Laaksonen A; Nordenskiöld L
    Biopolymers; 2004 Apr; 73(5):542-55. PubMed ID: 15048778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Interaction of polyamines with chromatin and DNA: formation of compact structures].
    Smirnov IV; Dimitrov SI; Makarov VL
    Mol Biol (Mosk); 1987; 21(5):1411-21. PubMed ID: 3683384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity.
    Bignon E; Chan CH; Morell C; Monari A; Ravanat JL; Dumont E
    Chemistry; 2017 Sep; 23(52):12845-12852. PubMed ID: 28815856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Binding of polyamines by the double-helical DNA molecule in unfolded and compact forms].
    Slonitskiĭ SV; Kuptsov VIu
    Mol Biol (Mosk); 1989; 23(2):507-17. PubMed ID: 2770729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Left-handed DNA: from synthetic polymers to chromosomes.
    Jovin TM; McIntosh LP; Arndt-Jovin DJ; Zarling DA; Robert-Nicoud M; van de Sande JH; Jorgenson KF; Eckstein F
    J Biomol Struct Dyn; 1983 Oct; 1(1):21-57. PubMed ID: 6401113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fourier transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines.
    Ruiz-Chica J; Medina MA; Sánchez-Jiménez F; Ramírez FJ
    Biophys J; 2001 Jan; 80(1):443-54. PubMed ID: 11159415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implications and concepts of polyamine-nucleic acid interactions.
    Feuerstein BG; Williams LD; Basu HS; Marton LJ
    J Cell Biochem; 1991 May; 46(1):37-47. PubMed ID: 1874798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural specificity of polyamines in left-handed Z-DNA formation. Immunological and spectroscopic studies.
    Thomas TJ; Messner RP
    J Mol Biol; 1988 May; 201(2):463-7. PubMed ID: 3418706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of aminooxy analogues of biogenic polyamines on aggregation and stability of calf thymus DNA.
    Ramírez FJ; Thomas TJ; Antony T; Ruiz-Chica J; Thomas T
    Biopolymers; 2002 Oct; 65(2):148-57. PubMed ID: 12209465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical features of the protein kinase CK2 polyamine binding site.
    Leroy D; Filhol O; Delcros JG; Pares S; Chambaz EM; Cochet C
    Biochemistry; 1997 Feb; 36(6):1242-50. PubMed ID: 9063872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Left-handed Z-DNA helices in polymers, restriction fragments, and recombinant plasmids.
    O'Connor T; Kilpatrick MW; Klysik J; Larson JE; Martin JC; Singleton CK; Stirdivant SM; Zacharias W; Wells RD
    J Biomol Struct Dyn; 1983 Dec; 1(4):999-1009. PubMed ID: 6101088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relationship between polyamine accumulation and DNA replication in synchronized Chinese hamster ovary cells after heat shock.
    Gerner EW; Russell DH
    Cancer Res; 1977 Feb; 37(2):482-9. PubMed ID: 832272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of the binding of progesterone receptor to DNA by polyamines.
    Thomas T; Kiang DT
    Cancer Res; 1988 Mar; 48(5):1217-22. PubMed ID: 3342402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural analysis of DNA interactions with biogenic polyamines and cobalt(III)hexamine studied by Fourier transform infrared and capillary electrophoresis.
    Ouameur AA; Tajmir-Riahi HA
    J Biol Chem; 2004 Oct; 279(40):42041-54. PubMed ID: 15284235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.