These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24828010)

  • 1. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.
    Zhou M; Zhang Q; Wang J
    PLoS One; 2014; 9(5):e97086. PubMed ID: 24828010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model reference adaptive control based on kp model for magnetically controlled shape memory alloy actuators.
    Zhou M; Zhang Y; Ji K; Zhu D
    J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e31-e37. PubMed ID: 28574096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model.
    Zhou M; Wang S; Gao W
    ScientificWorldJournal; 2013; 2013():865176. PubMed ID: 23737730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feed-forward control for magnetic shape memory alloy actuators based on the radial basis function neural network model.
    Zhou M; Wang Y; Xu R; Zhang Q; Zhu D
    J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e25-e30. PubMed ID: 28525678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking control of shape-memory-alloy actuators based on self-sensing feedback and inverse hysteresis compensation.
    Liu SH; Huang TS; Yen JY
    Sensors (Basel); 2010; 10(1):112-27. PubMed ID: 22315530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Laguerre based adaptive predictive control to Shape Memory Alloy (SMA) Actuator.
    Kannan S; Giraud-Audine C; Patoor E
    ISA Trans; 2013 Jul; 52(4):469-79. PubMed ID: 23541523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Tracking Control for the Piezoelectric Actuated Stage Using the Krasnosel'skii-Pokrovskii Operator.
    Xu R; Tian D; Wang Z
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32466151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Control of Magnetic Shape Memory Alloy Actuators.
    Minorowicz B; Milecki A
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Network Direct Control with Online Learning for Shape Memory Alloy Manipulators.
    Gómez-Espinosa A; Castro Sundin R; Loidi Eguren I; Cuan-Urquizo E; Treviño-Quintanilla CD
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.
    Lin JH; Chiang MH
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27571081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
    Li P; Yan F; Ge C; Zhang M
    Rev Sci Instrum; 2012 Aug; 83(8):085114. PubMed ID: 22938339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive compound control based on generalized Bouc-Wen inverse hysteresis modeling in piezoelectric actuators.
    Zhang Q; Gao Y; Li Q; Yin D
    Rev Sci Instrum; 2021 Nov; 92(11):115004. PubMed ID: 34852500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators.
    Badel A; Qiu J; Nakano T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1086-94. PubMed ID: 18519217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of Shape Memory Alloy Actuator with the Usage of LSTM Neural Network.
    Rączka W; Sibielak M
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism.
    Lin FJ; Shieh HJ; Huang PK
    IEEE Trans Neural Netw; 2006 Mar; 17(2):432-44. PubMed ID: 16566470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling.
    Qin Y; Zhang Y; Duan H; Han J
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
    Gu G; Zhu L
    Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent neural network based high-precision position compensation control of magnetic levitation system.
    Huang Z; Zhu J; Shao J; Wei Z; Tang J
    Sci Rep; 2022 Jul; 12(1):11435. PubMed ID: 35794141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis compensation of piezoelectric actuators: the modified Rayleigh model.
    Park J; Moon W
    Ultrasonics; 2010 Mar; 50(3):335-9. PubMed ID: 19939427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Feedforward Model of Piezoelectric Actuator for Precision Rapid Cutting.
    Zhong B; Liu S; Wang C; Jin Z; Sun L
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.