These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2482839)

  • 1. Intramembranous osteogenesis and angiogenesis in the chick embryo.
    Thompson TJ; Owens PD; Wilson DJ
    J Anat; 1989 Oct; 166():55-65. PubMed ID: 2482839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between cellular condensation, preosteoblast formation and epithelial-mesenchymal interactions in initiation of osteogenesis.
    Dunlop LL; Hall BK
    Int J Dev Biol; 1995 Apr; 39(2):357-71. PubMed ID: 7545414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divide, accumulate, differentiate: cell condensation in skeletal development revisited.
    Hall BK; Miyake T
    Int J Dev Biol; 1995 Dec; 39(6):881-93. PubMed ID: 8901191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and dynamic osteogenesis: two different types of bone formation.
    Ferretti M; Palumbo C; Contri M; Marotti G
    Anat Embryol (Berl); 2002 Dec; 206(1-2):21-9. PubMed ID: 12478364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasculogenesis and the induction of skeletogenic condensations in the avian eye.
    Jourdeuil K; Franz-Odendaal TA
    Anat Rec (Hoboken); 2012 Apr; 295(4):691-8. PubMed ID: 22344819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Demonstration of the inductive role of the brain in osteogenesis of the embryonic skull of the chicken].
    Schowing J
    J Embryol Exp Morphol; 1968 Feb; 19(1):83-94. PubMed ID: 5650921
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of the frontal bone and cranial meninges in the embryonic chick: an experimental study of tissue interactions.
    Tyler MS
    Anat Rec; 1983 May; 206(1):61-70. PubMed ID: 6881551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic differentiation is selectively promoted by morphogenetic signals from chondrocytes and synergized by a nutrient rich growth environment.
    Gerstenfeld LC; Barnes GL; Shea CM; Einhorn TA
    Connect Tissue Res; 2003; 44 Suppl 1():85-91. PubMed ID: 12952179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis.
    Widelitz RB; Jiang TX; Murray BA; Chuong CM
    J Cell Physiol; 1993 Aug; 156(2):399-411. PubMed ID: 8344994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient expression of type II collagen and tissue mobilization during development of the scleral ossicle, a membranous bone, in the chick embryo.
    Watanabe K; Bruder SP; Caplan AI
    Dev Dyn; 1994 Jul; 200(3):212-26. PubMed ID: 7949369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrocyte and osteoblast differentiation stage-specific monoclonal antibodies as a tool to investigate the initial bone formation in developing chick embryo.
    Galotto M; Campanile G; Banfi A; Trugli M; Cancedda R
    Eur J Cell Biol; 1995 Jun; 67(2):99-105. PubMed ID: 7664760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteocyte dendrogenesis in static and dynamic bone formation: an ultrastructural study.
    Palumbo C; Ferretti M; Marotti G
    Anat Rec A Discov Mol Cell Evol Biol; 2004 May; 278(1):474-80. PubMed ID: 15103743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold.
    Valarmathi MT; Yost MJ; Goodwin RL; Potts JD
    Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential.
    Fakhry A; Ratisoontorn C; Vedhachalam C; Salhab I; Koyama E; Leboy P; Pacifici M; Kirschner RE; Nah HD
    Bone; 2005 Feb; 36(2):254-66. PubMed ID: 15780951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of neural cell adhesion molecule (NCAM) during osteogenesis and secondary chondrogenesis in the embryonic chick.
    Fang J; Hall BK
    Int J Dev Biol; 1995 Jun; 39(3):519-28. PubMed ID: 7577443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of cellular dynamics during the development of intramembranous bones: the scleral ossicles.
    Jabalee J; Hillier S; Franz-Odendaal TA
    J Anat; 2013 Oct; 223(4):311-20. PubMed ID: 23930967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.
    Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW
    Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental control of chondrogenesis and osteogenesis.
    Cancedda R; Castagnola P; Cancedda FD; Dozin B; Quarto R
    Int J Dev Biol; 2000; 44(6):707-14. PubMed ID: 11061435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements.
    Tsigkou O; Jones JR; Polak JM; Stevens MM
    Biomaterials; 2009 Jul; 30(21):3542-50. PubMed ID: 19339047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing glucocorticoid-dependent osteogenesis in rat and chick cells in vitro by specific blockade of osteoblastic differentiation with progesterone and RU38486.
    Tenenbaum HC; Kamalia N; Sukhu B; Limeback H; McCulloch CA
    Anat Rec; 1995 Jun; 242(2):200-10. PubMed ID: 7668405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.