These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 24828494)
1. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. Gudmundsson M; Kim S; Wu M; Ishida T; Momeni MH; Vaaje-Kolstad G; Lundberg D; Royant A; Ståhlberg J; Eijsink VG; Beckham GT; Sandgren M J Biol Chem; 2014 Jul; 289(27):18782-92. PubMed ID: 24828494 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721 [TBL] [Abstract][Full Text] [Related]
3. Activity, stability and 3-D structure of the Cu(ii) form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens. Gregory RC; Hemsworth GR; Turkenburg JP; Hart SJ; Walton PH; Davies GJ Dalton Trans; 2016 Nov; 45(42):16904-16912. PubMed ID: 27722375 [TBL] [Abstract][Full Text] [Related]
5. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition. Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. Wu M; Beckham GT; Larsson AM; Ishida T; Kim S; Payne CM; Himmel ME; Crowley MF; Horn SJ; Westereng B; Igarashi K; Samejima M; Ståhlberg J; Eijsink VG; Sandgren M J Biol Chem; 2013 May; 288(18):12828-39. PubMed ID: 23525113 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Forsberg Z; Mackenzie AK; Sørlie M; Røhr ÅK; Helland R; Arvai AS; Vaaje-Kolstad G; Eijsink VG Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8446-51. PubMed ID: 24912171 [TBL] [Abstract][Full Text] [Related]
8. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267 [TBL] [Abstract][Full Text] [Related]
9. Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding. Tandrup T; Muderspach SJ; Banerjee S; Santoni G; Ipsen JØ; Hernández-Rollán C; Nørholm MHH; Johansen KS; Meilleur F; Lo Leggio L IUCrJ; 2022 Sep; 9(Pt 5):666-681. PubMed ID: 36071795 [TBL] [Abstract][Full Text] [Related]
16. Targeting the reactive intermediate in polysaccharide monooxygenases. Hedegård ED; Ryde U J Biol Inorg Chem; 2017 Oct; 22(7):1029-1037. PubMed ID: 28698982 [TBL] [Abstract][Full Text] [Related]
17. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase. O'Dell WB; Agarwal PK; Meilleur F Angew Chem Int Ed Engl; 2017 Jan; 56(3):767-770. PubMed ID: 28004877 [TBL] [Abstract][Full Text] [Related]
18. A frontier-orbital view of the initial steps of lytic polysaccharide monooxygenase reactions. Wieduwilt EK; Lo Leggio L; Hedegård ED Dalton Trans; 2024 Mar; 53(13):5796-5807. PubMed ID: 38445349 [TBL] [Abstract][Full Text] [Related]
19. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. Vermaas JV; Crowley MF; Beckham GT; Payne CM J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779 [TBL] [Abstract][Full Text] [Related]
20. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. Kracher D; Andlar M; Furtmüller PG; Ludwig R J Biol Chem; 2018 Feb; 293(5):1676-1687. PubMed ID: 29259126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]