BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 24828985)

  • 21. A biomechanical comparison of locked plate fixation with percutaneous insertion capability versus the angled blade plate in a subtrochanteric fracture gap model.
    Crist BD; Khalafi A; Hazelwood SJ; Lee MA
    J Orthop Trauma; 2009 Oct; 23(9):622-7. PubMed ID: 19897982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytotoxicity of novel hybrid composite materials for making bone fracture plates.
    Bihari A; Gee A; Bougherara H; Brzozowski P; Lawendy AR; Schemitsch EH; Zdero R
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38688325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The biomechanics of plate fixation of periprosthetic femoral fractures near the tip of a total hip implant: cables, screws, or both?
    Shah S; Kim SY; Dubov A; Schemitsch EH; Bougherara H; Zdero R
    Proc Inst Mech Eng H; 2011 Sep; 225(9):845-56. PubMed ID: 22070022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical analysis and clinical effects of bridge combined fixation system for femoral fractures.
    Wang DX; Xiong Y; Deng H; Jia F; Gu S; Liu BL; Li QH; Pu Q; Zhang ZZ
    Proc Inst Mech Eng H; 2014 Sep; 228(9):899-907. PubMed ID: 25201264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of carbon fibre composite fracture fixation plate using finite element analysis.
    Saidpour SH
    Ann Biomed Eng; 2006 Jul; 34(7):1157-63. PubMed ID: 16732432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Investigation on biomechanics behavior using three-dimensional finite element analysis for femur shaft fracture treated with locking compression plate].
    He Q; Jiang W; Luo J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Aug; 31(4):777-81, 792. PubMed ID: 25464786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A preliminary biomechanical assessment of a polymer composite hip implant using an infrared thermography technique validated by strain gage measurements.
    Bougherara H; Rahim E; Shah S; Dubov A; Schemitsch EH; Zdero R
    J Biomech Eng; 2011 Jul; 133(7):074503. PubMed ID: 21823752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Bone-Plate Material on the Predicted Stresses in the Tibial Shaft Comminuted Fractures: A Finite Element Analysis.
    Zhou K; Yang H
    J Invest Surg; 2022 Jan; 35(1):132-140. PubMed ID: 33089722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon fiber reinforced PEEK Optima--a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants.
    Steinberg EL; Rath E; Shlaifer A; Chechik O; Maman E; Salai M
    J Mech Behav Biomed Mater; 2013 Jan; 17():221-8. PubMed ID: 23127632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical properties of a structurally optimized carbon-fibre/epoxy intramedullary nail for femoral shaft fracture fixation.
    Samiezadeh S; Fawaz Z; Bougherara H
    J Mech Behav Biomed Mater; 2016 Mar; 56():87-97. PubMed ID: 26703226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term response of femoral density to hip implant and bone fracture plate: Computational study using a mechano-biochemical model.
    Avval PT; Samiezadeh S; Bougherara H
    Med Eng Phys; 2016 Feb; 38(2):171-80. PubMed ID: 26751582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new approach to the design of internal fixation plates.
    Woo SL; Simon BR; Akeson WH; Gomez MA; Seguchi Y
    J Biomed Mater Res; 1983 May; 17(3):427-39. PubMed ID: 6863347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of matrix material property on the composite tibia fracture plate: a biomechanical study.
    Roy D; Das MC; Dhason R; Roy S; Datta S
    Biomed Phys Eng Express; 2024 Apr; 10(3):. PubMed ID: 38547526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling.
    Fouad H
    Med Eng Phys; 2011 May; 33(4):456-63. PubMed ID: 21146439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal and composite bone plates for B1 periprosthetic femoral fracture in healthy and osteoporotic condition: A comparative biomechanical study.
    Dhason R; Roy S; Datta S
    Int J Artif Organs; 2022 Aug; 45(8):704-714. PubMed ID: 35848544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical design using in-vitro finite element modeling of distal femur fracture plates made from semi-rigid materials versus traditional metals for post-operative toe-touch weight-bearing.
    Gee A; Bougherara H; Schemitsch EH; Zdero R
    Med Eng Phys; 2021 Jan; 87():95-103. PubMed ID: 33461680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locked plating of comminuted distal femur fractures: does unlocked screw placement affect stability and failure?
    Cui S; Bledsoe JG; Israel H; Watson JT; Cannada LK
    J Orthop Trauma; 2014 Feb; 28(2):90-6. PubMed ID: 23860132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of fracture gap on stability of compression plate fixation: a finite element study.
    Oh JK; Sahu D; Ahn YH; Lee SJ; Tsutsumi S; Hwang JH; Jung DY; Perren SM; Oh CW
    J Orthop Res; 2010 Apr; 28(4):462-7. PubMed ID: 19862799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical comparison of 4 different lateral plate constructs for distal fibula fractures.
    Eckel TT; Glisson RR; Anand P; Parekh SG
    Foot Ankle Int; 2013 Nov; 34(11):1588-95. PubMed ID: 23818460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Less rigid internal fixation plates: historical perspectives and new concepts.
    Woo SL; Lothringer KS; Akeson WH; Coutts RD; Woo YK; Simon BR; Gomez MA
    J Orthop Res; 1984; 1(4):431-49. PubMed ID: 6491792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.