These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24829070)

  • 1. Comparisons of interfacial Phe, Tyr, and Trp residues as determinants of orientation and dynamics for GWALP transmembrane peptides.
    Sparks KA; Gleason NJ; Gist R; Langston R; Greathouse DV; Koeppe RE
    Biochemistry; 2014 Jun; 53(22):3637-45. PubMed ID: 24829070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine replacing tryptophan as an anchor in GWALP peptides.
    Gleason NJ; Vostrikov VV; Greathouse DV; Grant CV; Opella SJ; Koeppe RE
    Biochemistry; 2012 Mar; 51(10):2044-53. PubMed ID: 22364236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single tryptophan and tyrosine comparisons in the N-terminal and C-terminal interface regions of transmembrane GWALP peptides.
    Gleason NJ; Greathouse DV; Grant CV; Opella SJ; Koeppe RE
    J Phys Chem B; 2013 Nov; 117(44):13786-94. PubMed ID: 24111589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions.
    Vostrikov VV; Koeppe RE
    Biochemistry; 2011 Sep; 50(35):7522-35. PubMed ID: 21800919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses.
    Rankenberg JM; Vostrikov VV; DuVall CD; Greathouse DV; Koeppe RE; Grant CV; Opella SJ
    Biochemistry; 2012 May; 51(17):3554-64. PubMed ID: 22489564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix.
    Sustich SJ; Afrose F; Greathouse DV; Koeppe RE
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183134. PubMed ID: 31738898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues.
    McKay MJ; Martfeld AN; De Angelis AA; Opella SJ; Greathouse DV; Koeppe RE
    Biophys J; 2018 Jun; 114(11):2617-2629. PubMed ID: 29874612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices.
    Mortazavi A; Rajagopalan V; Sparks KA; Greathouse DV; Koeppe RE
    Chembiochem; 2016 Mar; 17(6):462-5. PubMed ID: 26749271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accommodation of a central arginine in a transmembrane peptide by changing the placement of anchor residues.
    Vostrikov VV; Hall BA; Sansom MS; Koeppe RE
    J Phys Chem B; 2012 Nov; 116(43):12980-90. PubMed ID: 23030363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionization Properties of Histidine Residues in the Lipid Bilayer Membrane Environment.
    Martfeld AN; Greathouse DV; Koeppe RE
    J Biol Chem; 2016 Sep; 291(36):19146-56. PubMed ID: 27440045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing Interfacial Trp, Interfacial His and pH Dependence for the Anchoring of Tilted Transmembrane Helical Peptides.
    Afrose F; Koeppe Ii RE
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32053887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes.
    Lipinski K; McKay MJ; Afrose F; Martfeld AN; Koeppe RE; Greathouse DV
    Chembiochem; 2019 Nov; 20(21):2784-2792. PubMed ID: 31150136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane Helix Integrity versus Fraying To Expose Hydrogen Bonds at a Membrane-Water Interface.
    Afrose F; McKay MJ; Mortazavi A; Suresh Kumar V; Greathouse DV; Koeppe RE
    Biochemistry; 2019 Feb; 58(6):633-645. PubMed ID: 30565458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide.
    McKay MJ; Fu R; Greathouse DV; Koeppe RE
    J Phys Chem B; 2019 Sep; 123(38):8034-8047. PubMed ID: 31483653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of pH dependency and orientation differences of membrane spanning alpha helices carrying a single or pair of buried histidine residues.
    Afrose F; Martfeld AN; Greathouse DV; Koeppe RE
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183501. PubMed ID: 33130099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices.
    Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE
    Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of the orientation of transmembrane peptides using solid-state (2)H- and (15)N-NMR: mobility matters.
    Grage SL; Strandberg E; Wadhwani P; Esteban-Martín S; Salgado J; Ulrich AS
    Eur Biophys J; 2012 May; 41(5):475-82. PubMed ID: 22453992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of glutamic acid residues and pH on the properties of transmembrane helices.
    Rajagopalan V; Greathouse DV; Koeppe RE
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):484-492. PubMed ID: 28069412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged or aromatic anchor residue dependence of transmembrane peptide tilt.
    Vostrikov VV; Daily AE; Greathouse DV; Koeppe RE
    J Biol Chem; 2010 Oct; 285(41):31723-30. PubMed ID: 20667827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in transmembrane helix alignment by arginine residues revealed by solid-state NMR experiments and coarse-grained MD simulations.
    Vostrikov VV; Hall BA; Greathouse DV; Koeppe RE; Sansom MS
    J Am Chem Soc; 2010 Apr; 132(16):5803-11. PubMed ID: 20373735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.