These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24829094)

  • 21. Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering.
    Guda T; Oh S; Appleford MR; Ong JL
    Int J Oral Maxillofac Implants; 2012; 27(2):288-94. PubMed ID: 22442766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds.
    McNamara SL; Rnjak-Kovacina J; Schmidt DF; Lo TJ; Kaplan DL
    Biomaterials; 2014 Aug; 35(25):6941-53. PubMed ID: 24881027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect.
    Panseri S; Cunha C; D'Alessandro T; Sandri M; Russo A; Giavaresi G; Marcacci M; Hung CT; Tampieri A
    PLoS One; 2012; 7(6):e38710. PubMed ID: 22685602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration.
    Kang MH; Lee H; Jang TS; Seong YJ; Kim HE; Koh YH; Song J; Jung HD
    Acta Biomater; 2019 Jan; 84():453-467. PubMed ID: 30500444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone Regeneration Using Hydroxyapatite Sponge Scaffolds with In Vivo Deposited Extracellular Matrix.
    Ventura RD; Padalhin AR; Min YK; Lee BT
    Tissue Eng Part A; 2015 Nov; 21(21-22):2649-61. PubMed ID: 26228909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid prototyping amphiphilic polymer/hydroxyapatite composite scaffolds with hydration-induced self-fixation behavior.
    Kutikov AB; Gurijala A; Song J
    Tissue Eng Part C Methods; 2015 Mar; 21(3):229-41. PubMed ID: 25025950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.
    Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E
    Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of porous hydroxyapatite/β-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering.
    Du J; Gan S; Bian Q; Fu D; Wei Y; Wang K; Lin Q; Chen W; Huang D
    J Biomater Appl; 2018 Sep; 33(3):402-409. PubMed ID: 30223737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.
    Rouholamin D; van Grunsven W; Reilly GC; Smith PJ
    Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting.
    Gao L; Li C; Chen F; Liu C
    Biomed Mater; 2015 Jun; 10(3):035009. PubMed ID: 26107985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds.
    Cordell JM; Vogl ML; Wagoner Johnson AJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):560-70. PubMed ID: 19627863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct 3-D printing of Ti-6Al-4V/HA composite porous scaffolds for customized mechanical properties and biological functions.
    Yi T; Zhou C; Ma L; Wu L; Xu X; Gu L; Fan Y; Xian G; Fan H; Zhang X
    J Tissue Eng Regen Med; 2020 Mar; 14(3):486-496. PubMed ID: 32012461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three dimensional melt-deposition of polycaprolactone/bio-derived hydroxyapatite composite into scaffold for bone repair.
    Jiang W; Shi J; Li W; Sun K
    J Biomater Sci Polym Ed; 2013; 24(5):539-50. PubMed ID: 23565866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration.
    Masehi-Lano JJ; Chung EJ
    Methods Mol Biol; 2018; 1758():1-10. PubMed ID: 29679318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.