BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24829165)

  • 1. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.
    Heitzer HM; Savoie BM; Marks TJ; Ratner MA
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7456-60. PubMed ID: 24829165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
    Heiber MC; Dhinojwala A
    J Chem Phys; 2012 Jul; 137(1):014903. PubMed ID: 22779679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic features of charge generation in organic semiconductors.
    Savoie BM; Jackson NE; Chen LX; Marks TJ; Ratner MA
    Acc Chem Res; 2014 Nov; 47(11):3385-94. PubMed ID: 25051395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation.
    Tamura H; Burghardt I
    J Am Chem Soc; 2013 Nov; 135(44):16364-7. PubMed ID: 24138412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yield of exciton dissociation in a donor-acceptor photovoltaic junction.
    Li G; Nitzan A; Ratner MA
    Phys Chem Chem Phys; 2012 Nov; 14(41):14270-6. PubMed ID: 22955347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo Simulations of Charge Transport in 2D Organic Photovoltaics.
    Gagorik AG; Mohin JW; Kowalewski T; Hutchison GR
    J Phys Chem Lett; 2013 Jan; 4(1):36-42. PubMed ID: 26291208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multidimensional View of Charge Transfer Excitons at Organic Donor-Acceptor Interfaces.
    Wang T; Kafle TR; Kattel B; Chan WL
    J Am Chem Soc; 2017 Mar; 139(11):4098-4106. PubMed ID: 28248094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton Diffusion in Conjugated Polymers: From Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency.
    Tamai Y; Ohkita H; Benten H; Ito S
    J Phys Chem Lett; 2015 Sep; 6(17):3417-28. PubMed ID: 26269208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.
    Menke SM; Mullenbach TK; Holmes RJ
    ACS Nano; 2015 Apr; 9(4):4543-52. PubMed ID: 25798712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration.
    Aplan MP; Munro JM; Lee Y; Brigeman AN; Grieco C; Wang Q; Giebink NC; Dabo I; Asbury JB; Gomez ED
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39933-39941. PubMed ID: 30360072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics.
    Jailaubekov AE; Willard AP; Tritsch JR; Chan WL; Sai N; Gearba R; Kaake LG; Williams KJ; Leung K; Rossky PJ; Zhu XY
    Nat Mater; 2013 Jan; 12(1):66-73. PubMed ID: 23223125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal effect on the morphology and performance of organic photovoltaics.
    Kawashima E; Fujii M; Yamashita K
    Phys Chem Chem Phys; 2016 Sep; 18(38):26456-26465. PubMed ID: 27722481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiophene-Fullerene Heterojunctions.
    Huix-Rotllant M; Tamura H; Burghardt I
    J Phys Chem Lett; 2015 May; 6(9):1702-8. PubMed ID: 26263337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors.
    Balzer D; Kassal I
    J Phys Chem Lett; 2023 Mar; 14(8):2155-2162. PubMed ID: 36802583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.
    Yan Y; Song L; Shi Q
    J Chem Phys; 2018 Feb; 148(8):084109. PubMed ID: 29495761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.
    Lee J; Park S; Lee Y; Kim H; Shin D; Jeong J; Jeong K; Cho SW; Lee H; Yi Y
    Phys Chem Chem Phys; 2016 Feb; 18(7):5444-52. PubMed ID: 26821701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.
    Luo G; Ren X; Zhang S; Wu H; Choy WC; He Z; Cao Y
    Small; 2016 Mar; 12(12):1547-71. PubMed ID: 26856789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Exciton Polarity in Charge-Transfer Polymer/PCBM Bulk Heterojunction Films.
    Rolczynski BS; Szarko JM; Son HJ; Yu L; Chen LX
    J Phys Chem Lett; 2014 Jun; 5(11):1856-63. PubMed ID: 26273865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.
    Guan Z; Li HW; Zhang J; Cheng Y; Yang Q; Lo MF; Ng TW; Tsang SW; Lee CS
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21798-805. PubMed ID: 27482867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.