BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24830340)

  • 1. Edge structures for nanoscale graphene islands on Co(0001) surfaces.
    Prezzi D; Eom D; Rim KT; Zhou H; Xiao S; Nuckolls C; Heinz TF; Flynn GW; Hybertsen MS
    ACS Nano; 2014 Jun; 8(6):5765-73. PubMed ID: 24830340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Klein Edge Doublets from Graphene Monolayers.
    Kim JS; Warner JH; Robertson AW; Kirkland AI
    ACS Nano; 2015 Sep; 9(9):8916-22. PubMed ID: 26284501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local Carbon Concentration Determines the Graphene Edge Structure.
    Li D; Wang Y; Cui T; Ma Y; Ding F
    J Phys Chem Lett; 2020 May; 11(9):3451-3457. PubMed ID: 32298587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic state of oxidized nanographene edge with atomically sharp zigzag boundaries.
    Ohtsuka M; Fujii S; Kiguchi M; Enoki T
    ACS Nano; 2013 Aug; 7(8):6868-74. PubMed ID: 23869576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and electronic properties of graphene nanoislands on Co(0001).
    Eom D; Prezzi D; Rim KT; Zhou H; Lefenfeld M; Xiao S; Nuckolls C; Hybertsen MS; Heinz TF; Flynn GW
    Nano Lett; 2009 Aug; 9(8):2844-8. PubMed ID: 19630380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-driven changes of the graphene edge structure on Ni(111): substrate vs hydrogen passivation.
    Patera LL; Bianchini F; Troiano G; Dri C; Cepek C; Peressi M; Africh C; Comelli G
    Nano Lett; 2015 Jan; 15(1):56-62. PubMed ID: 25535802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-surface synthesis of graphene nanoribbons with zigzag edge topology.
    Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R
    Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant edge state splitting at atomically precise graphene zigzag edges.
    Wang S; Talirz L; Pignedoli CA; Feng X; Müllen K; Fasel R; Ruffieux P
    Nat Commun; 2016 May; 7():11507. PubMed ID: 27181701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation and Electronic Structures of Multilayered Graphene Nanoribbons Produced by Two-Zone Chemical Vapor Deposition.
    Kojima T; Bao Y; Zhang C; Liu S; Xu H; Nakae T; Loh KP; Sakaguchi H
    Langmuir; 2017 Oct; 33(40):10439-10445. PubMed ID: 28960996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.
    Lopez-Bezanilla A; Zhou W; Idrobo JC
    J Phys Chem Lett; 2014 May; 5(10):1711-8. PubMed ID: 26270371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Surface Synthesis of NBN-Doped Zigzag-Edged Graphene Nanoribbons.
    Fu Y; Yang H; Gao Y; Huang L; Berger R; Liu J; Lu H; Cheng Z; Du S; Gao HJ; Feng X
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8873-8879. PubMed ID: 32134547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Klein edges in graphene.
    He K; Robertson AW; Lee S; Yoon E; Lee GD; Warner JH
    ACS Nano; 2014 Dec; 8(12):12272-9. PubMed ID: 25533172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Materials with Zigzag and Armchair Edges.
    Yamada Y; Kawai M; Yorimitsu H; Otsuka S; Takanashi M; Sato S
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40710-40739. PubMed ID: 30339344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions.
    Sun Q; Yao X; Gröning O; Eimre K; Pignedoli CA; Müllen K; Narita A; Fasel R; Ruffieux P
    Nano Lett; 2020 Sep; 20(9):6429-6436. PubMed ID: 32787158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge State Engineering of Graphene Nanoribbons.
    Su X; Xue Z; Li G; Yu P
    Nano Lett; 2018 Sep; 18(9):5744-5751. PubMed ID: 30111118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge structural stability and kinetics of graphene chemical vapor deposition growth.
    Shu H; Chen X; Tao X; Ding F
    ACS Nano; 2012 Apr; 6(4):3243-50. PubMed ID: 22417179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically induced topological zero mode at graphene armchair edges.
    Ziatdinov M; Lim H; Fujii S; Kusakabe K; Kiguchi M; Enoki T; Kim Y
    Phys Chem Chem Phys; 2017 Feb; 19(7):5145-5154. PubMed ID: 28140409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.