These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 24830397)
1. Quantifying silica in filter-deposited mine dusts using infrared spectra and partial least squares regression. Weakley AT; Miller AL; Griffiths PR; Bayman SJ Anal Bioanal Chem; 2014 Jul; 406(19):4715-24. PubMed ID: 24830397 [TBL] [Abstract][Full Text] [Related]
2. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression. Miller AL; Weakley AT; Griffiths PR; Cauda EG; Bayman S Appl Spectrosc; 2017 May; 71(5):1014-1024. PubMed ID: 27645724 [TBL] [Abstract][Full Text] [Related]
3. Multicomponent Measurement of Respirable Quartz, Kaolinite and Coal Dust using Fourier Transform Infrared Spectroscopy (FTIR): A Comparison Between Partial Least Squares and Principal Component Regressions. Stacey P; Clegg F; Sammon C Ann Work Expo Health; 2022 Jun; 66(5):644-655. PubMed ID: 34595523 [TBL] [Abstract][Full Text] [Related]
4. Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa. Stacey P; Clegg F; Rhyder G; Sammon C Ann Work Expo Health; 2022 Jul; 66(6):781-793. PubMed ID: 35088072 [TBL] [Abstract][Full Text] [Related]
5. A Novel Calibration Method for the Quantification of Respirable Particles in Mining Scenarios Using Fourier Transform Infrared Spectroscopy. Stach R; Barone T; Cauda E; Mizaikoff B Appl Spectrosc; 2021 Mar; 75(3):307-316. PubMed ID: 33031006 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples. Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the use of a field-based silica monitoring approach with dust from copper mines. Cauda E; Chubb L; Reed R; Stepp R J Occup Environ Hyg; 2018 Oct; 15(10):732-742. PubMed ID: 29985785 [TBL] [Abstract][Full Text] [Related]
8. A comparison of respirable crystalline silica concentration measurements using a direct-on-filter Fourier transform infrared (FT-IR) transmission method vs. a traditional laboratory X-ray diffraction method. Hart JF; Autenrieth DA; Cauda E; Chubb L; Spear TM; Wock S; Rosenthal S J Occup Environ Hyg; 2018 Oct; 15(10):743-754. PubMed ID: 29985762 [TBL] [Abstract][Full Text] [Related]
9. Application of end-of-shift respirable crystalline silica monitoring to construction. Chien CH; Huang G; Lopez B; Morea A; Sing SY; Wu CY; Kashon ML; Harper M J Occup Environ Hyg; 2020 Sep; 17(9):416-425. PubMed ID: 32749920 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the Analysis of Respirable Crystalline Silica in Workplace Air by Direct-on-Filter Methods using X-ray Diffraction and Fourier Transform Infrared Spectroscopy. Ichikawa A; Volpato J; O'Donnell GE; Mazereeuw M Ann Work Expo Health; 2022 Jun; 66(5):632-643. PubMed ID: 34718400 [TBL] [Abstract][Full Text] [Related]
11. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy. Farcas D; Lee T; Chisholm WP; Soo JC; Harper M J Occup Environ Hyg; 2016; 13(2):D16-22. PubMed ID: 26375614 [TBL] [Abstract][Full Text] [Related]
12. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site. Cauda E; Miller A; Drake P J Occup Environ Hyg; 2016; 13(3):D39-45. PubMed ID: 26558490 [TBL] [Abstract][Full Text] [Related]
13. Evaluating portable infrared spectrometers for measuring the silica content of coal dust. Miller AL; Drake PL; Murphy NC; Noll JD; Volkwein JC J Environ Monit; 2012 Jan; 14(1):48-55. PubMed ID: 22130611 [TBL] [Abstract][Full Text] [Related]
14. Monitoring Worker Exposure to Respirable Crystalline Silica: Application for Data-driven Predictive Modeling for End-of-Shift Exposure Assessment. Wolfe C; Chubb L; Walker R; Yekich M; Cauda E Ann Work Expo Health; 2022 Oct; 66(8):1010-1021. PubMed ID: 35716068 [TBL] [Abstract][Full Text] [Related]
15. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis. Page SJ AIHA J (Fairfax, Va); 2003; 64(1):30-9. PubMed ID: 12570393 [TBL] [Abstract][Full Text] [Related]
16. Direct infrared spectroscopy for the size-independent identification and quantification of respirable particles relative mass in mine dusts. Stach R; Barone T; Cauda E; Krebs P; Pejcic B; Daboss S; Mizaikoff B Anal Bioanal Chem; 2020 May; 412(14):3499-3508. PubMed ID: 32285183 [TBL] [Abstract][Full Text] [Related]
17. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach. Grové T; Van Dyk T; Franken A; Du Plessis J J Occup Environ Hyg; 2014; 11(6):406-14. PubMed ID: 24380473 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of PVC and PTFE filters for direct-on-filter crystalline silica quantification by FTIR. Osho B; Elahifard M; Wang X; Abbasi B; Chow JC; Watson JG; Arnott WP; Reed WR; Parks D J Occup Environ Hyg; 2024 Aug; 21(8):539-550. PubMed ID: 38958555 [TBL] [Abstract][Full Text] [Related]
19. Performance Comparison of Four Portable FTIR Instruments for Direct-on-Filter Measurement of Respirable Crystalline Silica. Ashley EL; Cauda E; Chubb LG; Tuchman DP; Rubinstein EN Ann Work Expo Health; 2020 Jun; 64(5):536-546. PubMed ID: 32266371 [TBL] [Abstract][Full Text] [Related]
20. Respirable dust exposures in U.S. surface coal mines (1982-1986). Piacitelli GM; Amandus HE; Dieffenbach A Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]