These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24830433)

  • 1. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope.
    Xu TT; Ning ZY; Shi TW; Fu MQ; Wang JY; Chen Q
    Nanotechnology; 2014 Jun; 25(22):225702. PubMed ID: 24830433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ multiproperty measurements of individual nanomaterials in SEM and correlation with their atomic structures.
    Ning ZY; Fu MQ; Shi TW; Guo Y; Wei XL; Gao S; Chen Q
    Nanotechnology; 2014 Jul; 25(27):275703. PubMed ID: 24959846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-tilt in situ TEM holder with multiple electrical contacts and its application in MEMS-based mechanical testing of nanomaterials.
    Bernal RA; Ramachandramoorthy R; Espinosa HD
    Ultramicroscopy; 2015 Sep; 156():23-8. PubMed ID: 25974881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a nanostructure thermal property measurement platform.
    Harris CT; Martinez JA; Shaner EA; Huang JY; Swartzentruber BS; Sullivan JP; Chen G
    Nanotechnology; 2011 Jul; 22(27):275308. PubMed ID: 21602618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope.
    Wei X; Chen Q; Peng L; Cui R; Li Y
    Ultramicroscopy; 2010 Feb; 110(3):182-9. PubMed ID: 19962243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing Ohmic contacts for in situ current-voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope.
    Chen Q; Wang S; Peng LM
    Nanotechnology; 2006 Feb; 17(4):1087-98. PubMed ID: 21727386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cheap and quickly adaptable in situ electrical contacting TEM sample holder design.
    Börrnert F; Voigtländer R; Rellinghaus B; Büchner B; Rümmeli MH; Lichte H
    Ultramicroscopy; 2014 Apr; 139():1-4. PubMed ID: 24509434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Transmission Electron Microscopy Modulation of Transport in Graphene Nanoribbons.
    Rodríguez-Manzo JA; Qi ZJ; Crook A; Ahn JH; Johnson AT; Drndić M
    ACS Nano; 2016 Apr; 10(4):4004-10. PubMed ID: 27010816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy.
    Chin SC; Chang YC; Chang CS
    Nanotechnology; 2009 Jul; 20(28):285307. PubMed ID: 19546489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and electric measurements of nanostructures inside transmission electron microscope.
    Chen Q; Peng LM
    Ultramicroscopy; 2011 Jun; 111(7):948-54. PubMed ID: 21664554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.
    Kushima A; Huang JY; Li J
    ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.
    Qin S; Kim TH; Wang Z; Li AP
    Rev Sci Instrum; 2012 Jun; 83(6):063704. PubMed ID: 22755631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic property investigations of single-walled carbon nanotube bundles in situ within a transmission electron microscope: an evaluation.
    Aslam Z; Abraham M; Brown A; Rand B; Brydson R
    J Microsc; 2008 Jul; 231(Pt 1):144-55. PubMed ID: 18638198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors.
    Kim T; Kim S; Olson E; Zuo JM
    Ultramicroscopy; 2008 Jun; 108(7):613-8. PubMed ID: 18061353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel planar field emission of ultra-thin individual carbon nanotubes.
    Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D
    Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ electronic probing of semiconducting nanowires in an electron microscope.
    Fauske VT; Erlbeck MB; Huh J; Kim DC; Munshi AM; Dheeraj DL; Weman H; Fimland BO; Van Helvoort AT
    J Microsc; 2016 May; 262(2):183-8. PubMed ID: 26501240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromachined silicon transmission electron microscopy grids for direct characterization of as-grown nanotubes.
    Choi Y; Johnson J; Moreau R; Perozziello E; Ural A
    Nanotechnology; 2006 Sep; 17(18):4635-9. PubMed ID: 21727588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in a transmission electron microscope.
    Kawamoto N; Wang MS; Wei X; Tang DM; Murakami Y; Shindo D; Mitome M; Golberg D
    Nanotechnology; 2011 Dec; 22(48):485707. PubMed ID: 22071953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials.
    Higuchi S; Kubo O; Kuramochi H; Aono M; Nakayama T
    Nanotechnology; 2011 Jul; 22(28):285205. PubMed ID: 21659691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.