These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 24830565)

  • 1. Localized surface plasmon resonance nanosensing of C-reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization.
    Kitayama Y; Takeuchi T
    Anal Chem; 2014 Jun; 86(11):5587-94. PubMed ID: 24830565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.
    Kamon Y; Kitayama Y; Itakura AN; Fukazawa K; Ishihara K; Takeuchi T
    Phys Chem Chem Phys; 2015 Apr; 17(15):9951-8. PubMed ID: 25783194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein.
    Matsuura R; Tawa K; Kitayama Y; Takeuchi T
    Chem Commun (Camb); 2016 Mar; 52(20):3883-6. PubMed ID: 26660887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disposable paper-based electrochemical sensor using thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine) for the label-free detection of C-reactive protein.
    Pinyorospathum C; Chaiyo S; Sae-Ung P; Hoven VP; Damsongsang P; Siangproh W; Chailapakul O
    Mikrochim Acta; 2019 Jun; 186(7):472. PubMed ID: 31243577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles.
    Iwasaki S; Kawasaki H; Iwasaki Y
    Langmuir; 2019 Feb; 35(5):1749-1755. PubMed ID: 29728047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.
    Inoue Y; Onodera Y; Ishihara K
    Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives.
    Shiojima T; Inoue Y; Kyomoto M; Ishihara K
    Acta Biomater; 2016 Aug; 40():38-45. PubMed ID: 27154499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of CO2/N2-triggered reversible stability-controllable poly(2-(diethylamino)ethyl methacrylate)-grafted-AuNPs by surface-initiated atom transfer radical polymerization.
    Kitayama Y; Takeuchi T
    Langmuir; 2014 Oct; 30(42):12684-9. PubMed ID: 25268967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.
    Wang K; Fan X; Zhang X; Zhang X; Chen Y; Wei Y
    Colloids Surf B Biointerfaces; 2016 Aug; 144():188-195. PubMed ID: 27088188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker.
    Hu W; Chen H; Shi Z; Yu L
    Anal Biochem; 2014 May; 453():16-21. PubMed ID: 24607795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile graft of poly(2-methacryloyloxyethyl phosphorylcholine) onto Fe(3) O(4) nanoparticles by ATRP: synthesis, properties, and biocompatibility.
    Sun XY; Yu SS; Wan JQ; Chen KZ
    J Biomed Mater Res A; 2013 Feb; 101(2):607-12. PubMed ID: 22887925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(2-methacryloyloxyethyl phosphorylcholine) grafting and vitamin E blending for high wear resistance and oxidative stability of orthopedic bearings.
    Kyomoto M; Moro T; Yamane S; Watanabe K; Hashimoto M; Takatori Y; Tanaka S; Ishihara K
    Biomaterials; 2014 Aug; 35(25):6677-86. PubMed ID: 24836953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ε-caprolactone) modification via surface initiated atom transfer radical polymerization with bio-inspired phosphorylcholine.
    He L; Huang L; Zhang S; Chen Y; Luo X
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():45-51. PubMed ID: 28532052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine.
    Tateishi T; Kyomoto M; Kakinoki S; Yamaoka T; Ishihara K
    J Biomed Mater Res A; 2014 May; 102(5):1342-9. PubMed ID: 23720384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-monodisperse poly(2-(methacryloyloxy)ethyl phosphorylcholine)-based macromonomers prepared by atom transfer radical polymerization and thiol-ene click chemistry: novel reactive steric stabilizers for aqueous emulsion polymerization.
    Warren NJ; Muise C; Stephens A; Armes SP; Lewis AL
    Langmuir; 2012 Feb; 28(5):2928-36. PubMed ID: 22191694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly(2-methacryloyloxyethyl phosphorylcholine).
    Kyomoto M; Moro T; Yamane S; Hashimoto M; Takatori Y; Ishihara K
    Biomaterials; 2013 Oct; 34(32):7829-39. PubMed ID: 23891520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization.
    Feng W; Zhu S; Ishihara K; Brash JL
    Langmuir; 2005 Jun; 21(13):5980-7. PubMed ID: 15952850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold Nanoparticles Grafted with PLL-
    Li HJ; Li PY; Li LY; Haleem A; He WD
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29659531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization.
    Liu Q; Singh A; Lalani R; Liu L
    Biomacromolecules; 2012 Apr; 13(4):1086-92. PubMed ID: 22385371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticoagulant polyurethane substrates modified with poly(2-methacryloyloxyethyl phosphorylcholine) via SI-RATRP.
    Chi C; Sun B; Zhou N; Zhang M; Chu X; Yuan P; Shen J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():301-308. PubMed ID: 29329075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.