These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 24830601)
1. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions. D'Archivio AA; Maggi MA; Ruggieri F J Sep Sci; 2014 Aug; 37(15):1930-6. PubMed ID: 24830601 [TBL] [Abstract][Full Text] [Related]
2. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography. Aschi M; D'Archivio AA; Mazzeo P; Pierabella M; Ruggieri F Anal Chim Acta; 2008 Jun; 616(2):123-37. PubMed ID: 18482595 [TBL] [Abstract][Full Text] [Related]
3. Multilinear gradient elution optimization in reversed-phase liquid chromatography based on logarithmic retention models: application to separation of a set of purines, pyrimidines and nucleosides. Nikitas P; Pappa-Louisi A; Agrafiotou P; Mansour A J Chromatogr A; 2011 Aug; 1218(33):5658-63. PubMed ID: 21774937 [TBL] [Abstract][Full Text] [Related]
4. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of sequential injection chromatography for reversed phase separation of triazine herbicides exploiting monolithic and core-shell columns. de Prá Urio R; Masini JC Talanta; 2015 Jan; 131():528-34. PubMed ID: 25281136 [TBL] [Abstract][Full Text] [Related]
7. Design of experiments and multivariate analysis for evaluation of reversed-phase high-performance liquid chromatography with charged aerosol detection of sucrose caprate regioisomers. Lie A; Wimmer R; Pedersen LH J Chromatogr A; 2013 Mar; 1281():67-72. PubMed ID: 23411148 [TBL] [Abstract][Full Text] [Related]
8. Interconversion of gradient and isocratic retention data in reversed-phase liquid chromatography: effect of the uptake of eluent modifier on the retention of analytes. Wang M; Mallette J; Parcher JF J Chromatogr A; 2009 Dec; 1216(49):8630-5. PubMed ID: 19879590 [TBL] [Abstract][Full Text] [Related]
9. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors. D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600 [TBL] [Abstract][Full Text] [Related]
10. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673 [TBL] [Abstract][Full Text] [Related]
11. Quantitative structure-retention relationships of azole antifungal agents in reversed-phase high performance liquid chromatography. Golubović J; Protić A; Zečević M; Otašević B; Mikić M; Živanović L Talanta; 2012 Oct; 100():329-37. PubMed ID: 23141345 [TBL] [Abstract][Full Text] [Related]
12. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors. D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2008 Nov; 628(2):162-72. PubMed ID: 18929004 [TBL] [Abstract][Full Text] [Related]
13. Retention Modelling of Phenoxy Acid Herbicides in Reversed-Phase HPLC under Gradient Elution. Biancolillo A; Maggi MA; Bassi S; Marini F; D'Archivio AA Molecules; 2020 Mar; 25(6):. PubMed ID: 32168813 [TBL] [Abstract][Full Text] [Related]
14. Retention behaviors of natural products in reversed-phase liquid chromatography using mobile phase comprising methanol, acetonitrile and water. Qiao X; Ye M; Liang YH; Yang WZ; Guo DA J Sep Sci; 2011 Jan; 34(2):169-75. PubMed ID: 21246722 [TBL] [Abstract][Full Text] [Related]
15. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression. D'Archivio AA; Maggi MA; Ruggieri F Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434 [TBL] [Abstract][Full Text] [Related]
16. Artificial Neural Network Prediction of Retention of Amino Acids in Reversed-Phase HPLC under Application of Linear Organic Modifier Gradients and/or pH Gradients. D'Archivio AA Molecules; 2019 Feb; 24(3):. PubMed ID: 30754702 [TBL] [Abstract][Full Text] [Related]
17. Quantitative structure/eluent-retention relationships in reversed-phase high-performance liquid chromatography based on the solvatochromic method. D'Archivio AA; Maggi MA; Ruggieri F Anal Bioanal Chem; 2013 Jan; 405(2-3):755-66. PubMed ID: 22760503 [TBL] [Abstract][Full Text] [Related]
18. Electrochemically modulated liquid chromatographic separation of triazines and the effect of pH on retention. Yakes BJ; Keller DW; Porter MD J Chromatogr A; 2010 Jun; 1217(26):4395-401. PubMed ID: 20478562 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography. Aschi M; D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2007 Jan; 582(2):235-42. PubMed ID: 17386498 [TBL] [Abstract][Full Text] [Related]
20. Application of artificial neural networks for prediction of retention factors of triazine herbicides in reversed-phase liquid chromatography. Ruggieri F; D'Archivio AA; Carlucci G; Mazzeo P J Chromatogr A; 2005 May; 1076(1-2):163-9. PubMed ID: 15974083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]