These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 24830762)
1. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Lin H; Lozito TP; Alexander PG; Gottardi R; Tuan RS Mol Pharm; 2014 Jul; 11(7):2203-12. PubMed ID: 24830762 [TBL] [Abstract][Full Text] [Related]
2. Osteochondral Tissue Chip Derived From iPSCs: Modeling OA Pathologies and Testing Drugs. Lin Z; Li Z; Li EN; Li X; Del Duke CJ; Shen H; Hao T; O'Donnell B; Bunnell BA; Goodman SB; Alexander PG; Tuan RS; Lin H Front Bioeng Biotechnol; 2019; 7():411. PubMed ID: 31921815 [TBL] [Abstract][Full Text] [Related]
3. Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis. Pattappa G; Schewior R; Hofmeister I; Seja J; Zellner J; Johnstone B; Docheva D; Angele P Cells; 2019 Aug; 8(8):. PubMed ID: 31434236 [TBL] [Abstract][Full Text] [Related]
4. Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Grayson WL; Bhumiratana S; Grace Chao PH; Hung CT; Vunjak-Novakovic G Osteoarthritis Cartilage; 2010 May; 18(5):714-23. PubMed ID: 20175974 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Meng F; Zhang Z; Chen W; Huang G; He A; Hou C; Long Y; Yang Z; Zhang Z; Liao W Osteoarthritis Cartilage; 2016 May; 24(5):932-41. PubMed ID: 26774733 [TBL] [Abstract][Full Text] [Related]
6. Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Lam J; Lu S; Lee EJ; Trachtenberg JE; Meretoja VV; Dahlin RL; van den Beucken JJ; Tabata Y; Wong ME; Jansen JA; Mikos AG; Kasper FK Osteoarthritis Cartilage; 2014 Sep; 22(9):1291-300. PubMed ID: 25008204 [TBL] [Abstract][Full Text] [Related]
7. Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro. Chen CH; Lin YS; Fu YC; Wang CK; Wu SC; Wang GJ; Eswaramoorthy R; Wang YH; Wang CZ; Wang YH; Lin SY; Chang JK; Ho ML J Appl Physiol (1985); 2013 Mar; 114(5):647-55. PubMed ID: 23239875 [TBL] [Abstract][Full Text] [Related]
8. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue. Babur BK; Futrega K; Lott WB; Klein TJ; Cooper-White J; Doran MR Cell Tissue Res; 2015 Sep; 361(3):755-68. PubMed ID: 25924853 [TBL] [Abstract][Full Text] [Related]
9. Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells. Gao B; Gao W; Wu Z; Zhou T; Qiu X; Wang X; Lian C; Peng Y; Liang A; Qiu J; Zhu Y; Xu C; Li Y; Su P; Huang D Stem Cell Res Ther; 2018 Jun; 9(1):162. PubMed ID: 29898779 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Lozito TP; Alexander PG; Lin H; Gottardi R; Cheng AW; Tuan RS Stem Cell Res Ther; 2013; 4 Suppl 1(Suppl 1):S6. PubMed ID: 24564995 [TBL] [Abstract][Full Text] [Related]
12. Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR. Hu N; Gao Y; Jayasuriya CT; Liu W; Du H; Ding J; Feng M; Chen Q Arthritis Res Ther; 2019 Jul; 21(1):167. PubMed ID: 31287025 [TBL] [Abstract][Full Text] [Related]
13. Modeling early changes associated with cartilage trauma using human-cell-laden hydrogel cartilage models. He C; Clark KL; Tan J; Zhou H; Tuan RS; Lin H; Wu S; Alexander PG Stem Cell Res Ther; 2022 Aug; 13(1):400. PubMed ID: 35927702 [TBL] [Abstract][Full Text] [Related]
14. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Marolt D; Augst A; Freed LE; Vepari C; Fajardo R; Patel N; Gray M; Farley M; Kaplan D; Vunjak-Novakovic G Biomaterials; 2006 Dec; 27(36):6138-49. PubMed ID: 16895736 [TBL] [Abstract][Full Text] [Related]
15. [Reconstruction of osteochondral defects with a stem cell-based cartilage-polymer construct in a small animal model]. Berner A; Siebenlist S; Reichert JC; Hendrich C; Nöth U Z Orthop Unfall; 2010 Jan; 148(1):31-8. PubMed ID: 20151353 [TBL] [Abstract][Full Text] [Related]
16. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source. Mellor LF; Mohiti-Asli M; Williams J; Kannan A; Dent MR; Guilak F; Loboa EG Tissue Eng Part A; 2015 Sep; 21(17-18):2323-33. PubMed ID: 26035347 [TBL] [Abstract][Full Text] [Related]
17. An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Pirosa A; Gottardi R; Alexander PG; Puppi D; Chiellini F; Tuan RS Biomaterials; 2021 May; 272():120773. PubMed ID: 33798958 [TBL] [Abstract][Full Text] [Related]
18. A human osteoarthritis osteochondral organ culture model for cartilage tissue engineering. Yeung P; Zhang W; Wang XN; Yan CH; Chan BP Biomaterials; 2018 Apr; 162():1-21. PubMed ID: 29428675 [TBL] [Abstract][Full Text] [Related]
19. Subchondral bone influences chondrogenic differentiation and collagen production of human bone marrow-derived mesenchymal stem cells and articular chondrocytes. Leyh M; Seitz A; Dürselen L; Schaumburger J; Ignatius A; Grifka J; Grässel S Arthritis Res Ther; 2014 Oct; 16(5):453. PubMed ID: 25296561 [TBL] [Abstract][Full Text] [Related]
20. Directed Regeneration of Osteochondral Tissue by Hierarchical Assembly of Spatially Organized Composite Spheroids. Lee J; Lee S; Huh SJ; Kang BJ; Shin H Adv Sci (Weinh); 2022 Jan; 9(3):e2103525. PubMed ID: 34806336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]