These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24830837)

  • 21. Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising.
    Jang U; Nam Y; Kim DH; Hwang D
    Neuroimage; 2013 Apr; 70():308-16. PubMed ID: 23296184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel temporal filtering strategy for functional MRI using UNFOLD.
    Domsch S; Lemke A; Weingärtner S; Schad LR
    Neuroimage; 2012 Aug; 62(1):59-66. PubMed ID: 22484204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of physiological noise correction on fMRI at 7 T.
    Hutton C; Josephs O; Stadler J; Featherstone E; Reid A; Speck O; Bernarding J; Weiskopf N
    Neuroimage; 2011 Jul; 57(1):101-112. PubMed ID: 21515386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of phase artifacts from fMRI data using a Stockwell transform filter improves brain activity detection.
    Goodyear BG; Zhu H; Brown RA; Mitchell JR
    Magn Reson Med; 2004 Jan; 51(1):16-21. PubMed ID: 14705040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data.
    Deckers RH; van Gelderen P; Ries M; Barret O; Duyn JH; Ikonomidou VN; Fukunaga M; Glover GH; de Zwart JA
    Neuroimage; 2006 Dec; 33(4):1072-81. PubMed ID: 17011214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetric spin-echo (ASE) spiral improves BOLD fMRI in inhomogeneous regions.
    Brewer KD; Rioux JA; D'Arcy RC; Bowen CV; Beyea SD
    NMR Biomed; 2009 Jul; 22(6):654-62. PubMed ID: 19382109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.
    Koush Y; Zvyagintsev M; Dyck M; Mathiak KA; Mathiak K
    Neuroimage; 2012 Jan; 59(1):478-89. PubMed ID: 21839842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological noise effects on the flip angle selection in BOLD fMRI.
    Gonzalez-Castillo J; Roopchansingh V; Bandettini PA; Bodurka J
    Neuroimage; 2011 Feb; 54(4):2764-78. PubMed ID: 21073963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-trial variability in event-related BOLD signals.
    Duann JR; Jung TP; Kuo WJ; Yeh TC; Makeig S; Hsieh JC; Sejnowski TJ
    Neuroimage; 2002 Apr; 15(4):823-35. PubMed ID: 11906223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Bayesian hierarchical correlation model for fMRI cluster analysis.
    Gómez-Laberge C; Adler A; Cameron I; Nguyen T; Hogan MJ
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):1967-76. PubMed ID: 21278012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noise reduction in BOLD-based fMRI using component analysis.
    Thomas CG; Harshman RA; Menon RS
    Neuroimage; 2002 Nov; 17(3):1521-37. PubMed ID: 12414291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents.
    Hagberg GE; Bianciardi M; Brainovich V; Cassarà AM; Maraviglia B
    Magn Reson Imaging; 2008 Sep; 26(7):1026-40. PubMed ID: 18479875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data.
    Bosma RL; Stroman PW
    Magn Reson Imaging; 2014 Jun; 32(5):473-81. PubMed ID: 24602827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DWT-CEM: an algorithm for scale-temporal clustering in fMRI.
    Sato JR; Fujita A; Amaro E; Miranda JM; Morettin PA; Brammer MJ
    Biol Cybern; 2007 Jul; 97(1):33-45. PubMed ID: 17534651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
    Zhang J; Tuo X; Yuan Z; Liao W; Chen H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3184-96. PubMed ID: 21859596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. False positive control of activated voxels in single fMRI analysis using bootstrap resampling in comparison to spatial smoothing.
    Darki F; Oghabian MA
    Magn Reson Imaging; 2013 Oct; 31(8):1331-7. PubMed ID: 23664823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining EEG and fMRI to investigate the post-movement beta rebound.
    Parkes LM; Bastiaansen MC; Norris DG
    Neuroimage; 2006 Feb; 29(3):685-96. PubMed ID: 16242346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.