These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 2483095)

  • 41. Amplitude death of coupled hair bundles with stochastic channel noise.
    Kim KJ; Ahn KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042703. PubMed ID: 24827274
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells.
    Meenderink SW; Quiñones PM; Bozovic D
    J Neurosci; 2015 Oct; 35(43):14457-66. PubMed ID: 26511238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells.
    Denk W; Webb WW
    Hear Res; 1992 Jun; 60(1):89-102. PubMed ID: 1500380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Are tip links the basis for mechanosensitivity of hair cells?].
    Gitter AH
    HNO; 1994 Jun; 42(6):327-33. PubMed ID: 7520893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells.
    Assad JA; Hacohen N; Corey DP
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2918-22. PubMed ID: 2468161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells.
    Hudspeth AJ; Choe Y; Mehta AD; Martin P
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11765-72. PubMed ID: 11050207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correlated movement of hair bundles coupled to the otolithic membrane in the bullfrog sacculus.
    Strimbu CE; Ramunno-Johnson D; Fredrickson L; Arisaka K; Bozovic D
    Hear Res; 2009 Oct; 256(1-2):58-63. PubMed ID: 19573584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of tension on hair-cell transduction channels: displacement and calcium dependence.
    Hacohen N; Assad JA; Smith WJ; Corey DP
    J Neurosci; 1989 Nov; 9(11):3988-97. PubMed ID: 2555460
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles.
    Dierkes K; Lindner B; Jülicher F
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18669-74. PubMed ID: 19015514
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement.
    Baird RA
    J Neurophysiol; 1994 Feb; 71(2):685-705. PubMed ID: 7909841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical noise enhances signal transmission in the bullfrog sacculus.
    Indresano AA; Frank JE; Middleton P; Jaramillo F
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):363-70. PubMed ID: 14690054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ATPase activity of myosin in hair bundles of the bullfrog's sacculus.
    Burlacu S; Tap WD; Lumpkin EA; Hudspeth AJ
    Biophys J; 1997 Jan; 72(1):263-71. PubMed ID: 8994611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical stimulation and Fura-2 fluorescence in the hair bundle of dissociated hair cells of the chick.
    Ohmori H
    J Physiol; 1988 May; 399():115-37. PubMed ID: 2457085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Friction from Transduction Channels' Gating Affects Spontaneous Hair-Bundle Oscillations.
    Barral J; Jülicher F; Martin P
    Biophys J; 2018 Jan; 114(2):425-436. PubMed ID: 29401440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure.
    Abeytunge S; Gianoli F; Hudspeth AJ; Kozlov AS
    Elife; 2021 Jul; 10():. PubMed ID: 34227465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An operating principle of the turtle utricle to detect wide dynamic range.
    Nam JH
    Hear Res; 2018 Mar; 360():31-39. PubMed ID: 29037815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Development of Cooperative Channels Explains the Maturation of Hair Cell's Mechanotransduction.
    Gianoli F; Risler T; Kozlov AS
    Biophys J; 2019 Oct; 117(8):1536-1548. PubMed ID: 31585704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
    Choe Y; Magnasco MO; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15321-6. PubMed ID: 9860967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity.
    Nadrowski B; Martin P; Jülicher F
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12195-200. PubMed ID: 15302928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14918-23. PubMed ID: 25228765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.