BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24831088)

  • 1. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks.
    Kinnunen H; Hebbink G; Peters H; Shur J; Price R
    AAPS PharmSciTech; 2014 Aug; 15(4):1009-20. PubMed ID: 24831088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.
    Kinnunen H; Hebbink G; Peters H; Shur J; Price R
    AAPS PharmSciTech; 2014 Aug; 15(4):898-909. PubMed ID: 24756910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition.
    Kinnunen H; Hebbink G; Peters H; Huck D; Makein L; Price R
    Int J Pharm; 2015 Jan; 478(1):53-59. PubMed ID: 25448567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulating powder-device combinations for salmeterol xinafoate dry powder inhalers.
    Hassoun M; Ho S; Muddle J; Buttini F; Parry M; Hammond M; Forbes B
    Int J Pharm; 2015 Jul; 490(1-2):360-7. PubMed ID: 25987210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations.
    Jetzer MW; Schneider M; Morrical BD; Imanidis G
    J Pharm Sci; 2018 Apr; 107(4):984-998. PubMed ID: 29247741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the Effect of Fine Lactose Ratio on the Rheological Properties and Aerodynamic Behavior of Dry Powder for Inhalation.
    Sun Y; Qin L; Li J; Su J; Song R; Zhang X; Guan J; Mao S
    AAPS J; 2021 Apr; 23(3):55. PubMed ID: 33856568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance.
    Cordts E; Steckel H
    Eur J Pharm Biopharm; 2012 Oct; 82(2):417-23. PubMed ID: 22902789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers.
    Lucas P; Anderson K; Staniforth JN
    Pharm Res; 1998 Apr; 15(4):562-9. PubMed ID: 9587952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the effect of added fines on the performance of dry powder inhalation formulations.
    Stankovic-Brandl M; Radivojev S; Sailer P; Penz FK; Paudel A
    Int J Pharm; 2022 Dec; 629():122359. PubMed ID: 36332830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.
    Tan BMJ; Chan LW; Heng PWS
    Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers.
    Schiavone H; Palakodaty S; Clark A; York P; Tzannis ST
    Int J Pharm; 2004 Aug; 281(1-2):55-66. PubMed ID: 15288343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation of novel dry powder inhalation for fluticasone propionate and salmeterol xinafoate with capsule-based device.
    Kim KS; Kim JH; Jin SG; Kim DW; Kim JO; Yong CS; Youn YS; Oh KT; Woo JS; Choi HG
    Pharm Dev Technol; 2018 Feb; 23(2):158-166. PubMed ID: 28612675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spherical agglomerates of lactose as potential carriers for inhalation.
    Zellnitz S; Lamešić D; Stranzinger S; Pinto JT; Planinšek O; Paudel A
    Eur J Pharm Biopharm; 2021 Feb; 159():11-20. PubMed ID: 33358941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of lactose fine size and drug shape on rheological properties and aerodynamic behavior of dry powders for inhalation.
    Sun Y; Yu D; Li J; Zhao J; Feng Y; Zhang X; Mao S
    Eur J Pharm Biopharm; 2022 Oct; 179():47-57. PubMed ID: 36029939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations.
    Hertel M; Schwarz E; Kobler M; Hauptstein S; Steckel H; Scherließ R
    Int J Pharm; 2018 Jan; 535(1-2):59-67. PubMed ID: 29100914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.
    Faulhammer E; Zellnitz S; Wutscher T; Stranzinger S; Zimmer A; Paudel A
    Int J Pharm; 2018 Jan; 536(1):326-335. PubMed ID: 29217472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of dispersion enhancer selection in the development of novel tratinterol hydrochloride dry powder inhalation formulations.
    Liu T; Tong S; Liao Q; Pan L; Cheng M; Rantanen J; Cun D; Yang M
    Int J Pharm; 2023 Mar; 635():122702. PubMed ID: 36773729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation and evaluation of insulin dry powder for inhalation.
    Mahesh Kumar T; Misra A
    Drug Dev Ind Pharm; 2006 Jul; 32(6):677-86. PubMed ID: 16885123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the potential of rheological measurements in development of dry powder inhalation formulations.
    Almansour K; Alfagih IM; Shalash AO; Brockbank K; Ali R; Freeman T; Elsayed MMA
    Int J Pharm; 2022 Feb; 614():121407. PubMed ID: 34942326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.