BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24831706)

  • 21. Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose.
    Chen Z; Huang J; Wu Y; Liu D
    Metab Eng; 2016 Jan; 33():12-18. PubMed ID: 26556130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of different metabolic pathways on itaconic acid production in engineered Corynebacterium glutamicum.
    Elkasaby T; Hanh DD; Kawaguchi H; Kondo A; Ogino C
    J Biosci Bioeng; 2023 Aug; 136(2):109-116. PubMed ID: 37328405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing
    Han T; Kim GB; Lee SY
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter.
    Li M; Li D; Huang Y; Liu M; Wang H; Tang Q; Lu F
    J Ind Microbiol Biotechnol; 2014 Apr; 41(4):701-9. PubMed ID: 24510022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum.
    Tsuge Y; Matsuzawa H
    World J Microbiol Biotechnol; 2021 Feb; 37(3):49. PubMed ID: 33569648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products.
    Becker J; Rohles CM; Wittmann C
    Metab Eng; 2018 Nov; 50():122-141. PubMed ID: 30031852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.
    Becker J; Zelder O; Häfner S; Schröder H; Wittmann C
    Metab Eng; 2011 Mar; 13(2):159-68. PubMed ID: 21241816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones.
    Kallscheuer N; Vogt M; Stenzel A; Gätgens J; Bott M; Marienhagen J
    Metab Eng; 2016 Nov; 38():47-55. PubMed ID: 27288926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lysine Fermentation: History and Genome Breeding.
    Ikeda M
    Adv Biochem Eng Biotechnol; 2017; 159():73-102. PubMed ID: 27832296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.
    Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC
    Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Progress in biosythesis of diaminopentane].
    Li D; Li M; Wang H; Wang S; Lu F
    Sheng Wu Gong Cheng Xue Bao; 2014 Feb; 30(2):161-74. PubMed ID: 24941739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum.
    Woo HM; Park JB
    J Biotechnol; 2014 Jun; 180():43-51. PubMed ID: 24632177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum.
    Chung SC; Park JS; Yun J; Park JH
    Metab Eng; 2017 Mar; 40():157-164. PubMed ID: 28232033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.
    Ladkau N; Assmann M; Schrewe M; Julsing MK; Schmid A; Bühler B
    Metab Eng; 2016 Jul; 36():1-9. PubMed ID: 26969251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
    Zhao N; Qian L; Luo G; Zheng S
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9517-9529. PubMed ID: 30218378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum.
    Tenhaef N; Kappelmann J; Eich A; Weiske M; Brieß L; Brüsseler C; Marienhagen J; Wiechert W; Noack S
    Biotechnol J; 2021 Sep; 16(9):e2100043. PubMed ID: 34089621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.