BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24831708)

  • 21. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity.
    Sánchez AM; Bennett GN; San KY
    Metab Eng; 2005 May; 7(3):229-39. PubMed ID: 15885621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.
    Bartek T; Blombach B; Lang S; Eikmanns BJ; Wiechert W; Oldiges M; Nöh K; Noack S
    Appl Environ Microbiol; 2011 Sep; 77(18):6644-52. PubMed ID: 21784914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altering the sensitivity of Escherichia coli pyruvate dehydrogenase complex to NADH inhibition by structure-guided design.
    Wang X; Wang A; Zhu L; Hua D; Qin J
    Enzyme Microb Technol; 2018 Dec; 119():52-57. PubMed ID: 30243387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate.
    Murarka A; Clomburg JM; Gonzalez R
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1860-1872. PubMed ID: 20167619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
    Jan J; Martinez I; Wang Y; Bennett GN; San KY
    Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced production of succinic acid from methanol-organosolv pretreated Strophanthus preussii by recombinant Escherichia coli.
    Olajuyin AM; Yang M; Mu T; Tian J; Thygesen A; Adesanoye OA; Adaramoye OA; Song A; Xing J
    Bioprocess Biosyst Eng; 2018 Oct; 41(10):1497-1508. PubMed ID: 30006798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations.
    Godoy MS; Nikel PI; Cabrera Gomez JG; Pettinari MJ
    Appl Environ Microbiol; 2016 Jan; 82(1):244-54. PubMed ID: 26497466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli.
    Huang B; Yang H; Fang G; Zhang X; Wu H; Li Z; Ye Q
    Biotechnol Bioeng; 2018 Apr; 115(4):943-954. PubMed ID: 29278414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli.
    Zhang X; Jantama K; Moore JC; Jarboe LR; Shanmugam KT; Ingram LO
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20180-5. PubMed ID: 19918073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH.
    Xi Y; Xu H; Zhan T; Qin Y; Fan F; Zhang X
    Metab Eng; 2023 Jan; 75():170-180. PubMed ID: 36566973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants.
    Moxley WC; Eiteman MA
    Appl Environ Microbiol; 2021 Jun; 87(13):e0048721. PubMed ID: 33863707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli.
    Li Y; Huang B; Wu H; Li Z; Ye Q; Zhang YP
    ACS Synth Biol; 2016 Nov; 5(11):1299-1307. PubMed ID: 27088218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced succinate production from glycerol by engineered Escherichia coli strains.
    Li Q; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in
    Kobayashi S; Kawaguchi H; Shirai T; Ninomiya K; Takahashi K; Kondo A; Tsuge Y
    ACS Synth Biol; 2020 Apr; 9(4):814-826. PubMed ID: 32202411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative fluxome and metabolome analysis for overproduction of succinate in Escherichia coli.
    Taymaz-Nikerel H; De Mey M; Baart GJ; Maertens J; Foulquié-Moreno MR; Charlier D; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2016 Apr; 113(4):817-29. PubMed ID: 26444867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.
    Wang Q; Ou MS; Kim Y; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2010 Apr; 76(7):2107-14. PubMed ID: 20118372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli.
    Kim YM; Cho HS; Jung GY; Park JM
    Biotechnol Bioeng; 2011 Dec; 108(12):2941-6. PubMed ID: 21732330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Engineering of Escherichia coli for High Yield Production of Succinic Acid Driven by Methanol.
    Zhang W; Zhang T; Song M; Dai Z; Zhang S; Xin F; Dong W; Ma J; Jiang M
    ACS Synth Biol; 2018 Dec; 7(12):2803-2811. PubMed ID: 30300546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.