These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 24831726)
1. A mathematical model for filtration and macromolecule transport across capillary walls. Facchini L; Bellin A; Toro EF Microvasc Res; 2014 Jul; 94():52-63. PubMed ID: 24831726 [TBL] [Abstract][Full Text] [Related]
2. The endothelial glycocalyx: Barrier functions versus red cell hemodynamics: A model of steady state ultrafiltration through a bi-layer formed by a porous outer layer and more selective membrane-associated inner layer. Curry FE; Michel CC Biorheology; 2019; 56(2-3):113-130. PubMed ID: 30664499 [TBL] [Abstract][Full Text] [Related]
3. The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels. Jacob M; Bruegger D; Rehm M; Stoeckelhuber M; Welsch U; Conzen P; Becker BF Cardiovasc Res; 2007 Feb; 73(3):575-86. PubMed ID: 17196565 [TBL] [Abstract][Full Text] [Related]
4. A new view of Starling's hypothesis at the microstructural level. Hu X; Weinbaum S Microvasc Res; 1999 Nov; 58(3):281-304. PubMed ID: 10527770 [TBL] [Abstract][Full Text] [Related]
5. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Becker BF; Chappell D; Jacob M Basic Res Cardiol; 2010 Nov; 105(6):687-701. PubMed ID: 20859744 [TBL] [Abstract][Full Text] [Related]
6. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Damiano ER Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411 [TBL] [Abstract][Full Text] [Related]
7. Microvascular ion transport through endothelial glycocalyx layer: new mechanism and improved Starling principle. Jiang XZ; Ventikos Y; Luo KH Am J Physiol Heart Circ Physiol; 2019 Jul; 317(1):H104-H113. PubMed ID: 31026187 [TBL] [Abstract][Full Text] [Related]
8. Poroelastic theory of transcapillary flow: effects of endothelial glycocalyx deterioration. Speziale S; Sivaloganathan S Microvasc Res; 2009 Dec; 78(3):432-41. PubMed ID: 19664642 [TBL] [Abstract][Full Text] [Related]
9. An electrochemical model of the transport of charged molecules through the capillary glycocalyx. Stace TM; Damiano ER Biophys J; 2001 Apr; 80(4):1670-90. PubMed ID: 11259282 [TBL] [Abstract][Full Text] [Related]
10. Osmotic reflextion coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentery. Curry FE; Michel CC; Mason JC J Physiol; 1976 Oct; 261(2):319-36. PubMed ID: 1086361 [TBL] [Abstract][Full Text] [Related]
11. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
12. Modeling Loss of Microvascular Wall Homeostasis during Glycocalyx Deterioration and Hypertension that Impacts Plasma Filtration and Solute Exchange. Facchini L; Bellin A; Toro EF Curr Neurovasc Res; 2016; 13(2):147-55. PubMed ID: 26903394 [TBL] [Abstract][Full Text] [Related]
13. In vitro study of Starling's hypothesis in a cultured monolayer of bovine aortic endothelial cells. Pang Z; Tarbell JM J Vasc Res; 2003; 40(4):351-8. PubMed ID: 12891004 [TBL] [Abstract][Full Text] [Related]
14. Steady-state fluid filtration at different capillary pressures in perfused frog mesenteric capillaries. Michel CC; Phillips ME J Physiol; 1987 Jul; 388():421-35. PubMed ID: 3498833 [TBL] [Abstract][Full Text] [Related]
16. Microvascular fluid exchange and the revised Starling principle. Levick JR; Michel CC Cardiovasc Res; 2010 Jul; 87(2):198-210. PubMed ID: 20200043 [TBL] [Abstract][Full Text] [Related]
17. Temperature and hydrostatic pressure-dependent pathways of low-density lipoprotein transport across microvascular barrier. Rutledge JC Am J Physiol; 1992 Jan; 262(1 Pt 2):H234-45. PubMed ID: 1733315 [TBL] [Abstract][Full Text] [Related]
18. Shedding of the endothelial glycocalyx in arterioles, capillaries, and venules and its effect on capillary hemodynamics during inflammation. Lipowsky HH; Gao L; Lescanic A Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2235-45. PubMed ID: 21926341 [TBL] [Abstract][Full Text] [Related]
19. Microvascular solute and water transport. Curry FR Microcirculation; 2005; 12(1):17-31. PubMed ID: 15804971 [TBL] [Abstract][Full Text] [Related]
20. Fluid filtration and reabsorption across microvascular walls: control by oncotic or osmotic pressure? (secondary publication). Bulat M; Klarica M Croat Med J; 2014 Aug; 55(4):291-8. PubMed ID: 25300098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]