These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids. Cai Y; Wu HA; Luo SN J Chem Phys; 2014 Jun; 140(21):214317. PubMed ID: 24908018 [TBL] [Abstract][Full Text] [Related]
6. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots. Diemand J; Angélil R; Tanaka KK; Tanaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803 [TBL] [Abstract][Full Text] [Related]
7. Cavitation and crystallization in a metastable Lennard-Jones liquid at negative pressures and low temperatures. Baidakov VG; Bobrov KS; Teterin AS J Chem Phys; 2011 Aug; 135(5):054512. PubMed ID: 21823717 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation. Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040 [TBL] [Abstract][Full Text] [Related]
9. Surface tension of cavitation bubbles. Bossert M; Trimaille I; Cagnon L; Chabaud B; Gueneau C; Spathis P; Wolf PE; Rolley E Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2300499120. PubMed ID: 37023124 [TBL] [Abstract][Full Text] [Related]
10. Homogeneous bubble nucleation driven by local hot spots: a molecular dynamics study. Wang ZJ; Valeriani C; Frenkel D J Phys Chem B; 2009 Mar; 113(12):3776-84. PubMed ID: 19007279 [TBL] [Abstract][Full Text] [Related]
11. Crystal nucleation and the solid-liquid interfacial free energy. Baidakov VG; Tipeev AO J Chem Phys; 2012 Feb; 136(7):074510. PubMed ID: 22360251 [TBL] [Abstract][Full Text] [Related]
12. Nucleation work, surface tension, and Gibbs-Tolman length for nucleus of any size. Kashchiev D J Chem Phys; 2020 Sep; 153(12):124509. PubMed ID: 33003745 [TBL] [Abstract][Full Text] [Related]
14. Free Energy Evaluation of Cavity Formation in Metastable Liquid Based on Stochastic Thermodynamics. Shimizu I; Matsumoto M Entropy (Basel); 2024 Aug; 26(8):. PubMed ID: 39202170 [TBL] [Abstract][Full Text] [Related]
15. Cavitation Mean Expectation Time in a Stretched Lennard-Jones Fluid under Confinement. Pellegrin M; Bouret Y; Celestini F; Noblin X Langmuir; 2020 Dec; 36(47):14181-14188. PubMed ID: 33196213 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules. Tanaka KK; Tanaka H; Yamamoto T; Kawamura K J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446 [TBL] [Abstract][Full Text] [Related]
17. A perspective on the interfacial properties of nanoscopic liquid drops. Malijevský A; Jackson G J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanism for cavitation in water under tension. Menzl G; Gonzalez MA; Geiger P; Caupin F; Abascal JL; Valeriani C; Dellago C Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13582-13587. PubMed ID: 27803329 [TBL] [Abstract][Full Text] [Related]
19. A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory. Julin J; Napari I; Merikanto J; Vehkamäki H J Chem Phys; 2010 Jul; 133(4):044704. PubMed ID: 20687673 [TBL] [Abstract][Full Text] [Related]
20. Tolman length and rigidity constants of the Lennard-Jones fluid. Wilhelmsen Ø; Bedeaux D; Reguera D J Chem Phys; 2015 Feb; 142(6):064706. PubMed ID: 25681934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]