BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24832299)

  • 1. Possible mechanism of adhesion in a mica supported phospholipid bilayer.
    Pertsin A; Grunze M
    J Chem Phys; 2014 May; 140(18):184707. PubMed ID: 24832299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of water-mediated adhesion between phospholipid bilayer and solid support functionalized with self-assembled monolayers.
    Pertsin A; Grunze M
    Biointerphases; 2012 Dec; 7(1-4):57. PubMed ID: 22926496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of phospholipid bilayer integrity in the analysis of protein-lipid interactions.
    Drücker P; Gerke V; Galla HJ
    Biochem Biophys Res Commun; 2014 Oct; 453(1):143-7. PubMed ID: 25264195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of water-mediated forces between gel-phase phospholipid bilayers.
    Pertsin A; Fedyanin I; Grunze M
    J Chem Phys; 2009 Dec; 131(21):215102. PubMed ID: 19968369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural disruption of phospholipid bilayers over a range of length scales by n-butanol.
    Setiawan I; Blanchard GJ
    J Phys Chem B; 2014 Mar; 118(11):3085-93. PubMed ID: 24571731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-catalyzed hydrolysis of the supported phospholipid bilayers studied by atomic force microscopy.
    Wu H; Yu L; Tong Y; Ge A; Yau S; Osawa M; Ye S
    Biochim Biophys Acta; 2013 Feb; 1828(2):642-51. PubMed ID: 22995243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.
    Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT
    Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscovite (mica) allows the characterisation of supported bilayers by ellipsometry and confocal fluorescence correlation spectroscopy.
    Benes M; Billy D; Hermens WT; Hof M
    Biol Chem; 2002 Feb; 383(2):337-41. PubMed ID: 11934273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.
    Nussio MR; Oncins G; Ridelis I; Szili E; Shapter JG; Sanz F; Voelcker NH
    J Phys Chem B; 2009 Jul; 113(30):10339-47. PubMed ID: 19572625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation study of the influence of small molecules on the dynamic and structural properties of phospholipid bilayers.
    Sum AK
    Chem Biodivers; 2005 Nov; 2(11):1503-16. PubMed ID: 17191950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-induced restructuration of a mica-supported phospholipid bilayer: an atomic force microscopy study.
    Fang N; Chan V
    Biomacromolecules; 2003; 4(6):1596-604. PubMed ID: 14606885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithographically defined macroscale modulation of lateral fluidity and phase separation realized via patterned nanoporous silica-supported phospholipid bilayers.
    Kendall EL; Ngassam VN; Gilmore SF; Brinker CJ; Parikh AN
    J Am Chem Soc; 2013 Oct; 135(42):15718-21. PubMed ID: 24111800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral electrical conductivity of mica-supported lipid bilayer membranes measured by scanning tunneling microscopy.
    Heim M; Cevc G; Guckenberger R; Knapp HF; Wiegräbe W
    Biophys J; 1995 Aug; 69(2):489-97. PubMed ID: 8527663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of two-component lipid membranes on solid support: an x-ray reflectivity study.
    Nováková E; Giewekemeyer K; Salditt T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051911. PubMed ID: 17279943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiscale coarse-graining method for biomolecular systems.
    Izvekov S; Voth GA
    J Phys Chem B; 2005 Feb; 109(7):2469-73. PubMed ID: 16851243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of water at the interface with phospholipid bilayers.
    Bhide SY; Berkowitz ML
    J Chem Phys; 2005 Dec; 123(22):224702. PubMed ID: 16375490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Gibbs energy interaction of phospholipid/cholesterol monolayers deposited on mica with probe liquids.
    Jurak M
    Chem Phys Lipids; 2014 Oct; 183():60-7. PubMed ID: 24882251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study.
    Basu A; Karmakar P; Karmakar S
    J Membr Biol; 2020 Jun; 253(3):205-219. PubMed ID: 32279087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of frictional properties of a phospholipid bilayer in a liquid environment with lateral force microscopy as a function of NaCl concentration.
    Oncins G; Garcia-Manyes S; Sanz F
    Langmuir; 2005 Aug; 21(16):7373-9. PubMed ID: 16042468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.