These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 24832319)

  • 1. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark tests and spin adaptation for the particle-particle random phase approximation.
    Yang Y; van Aggelen H; Steinmann SN; Peng D; Yang W
    J Chem Phys; 2013 Nov; 139(17):174110. PubMed ID: 24206290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear-response time-dependent density-functional theory with pairing fields.
    Peng D; van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A522. PubMed ID: 24832330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles.
    Peng D; Steinmann SN; van Aggelen H; Yang W
    J Chem Phys; 2013 Sep; 139(10):104112. PubMed ID: 24050333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge transfer excitations from particle-particle random phase approximation-Opportunities and challenges arising from two-electron deficient systems.
    Yang Y; Dominguez A; Zhang D; Lutsker V; Niehaus TA; Frauenheim T; Yang W
    J Chem Phys; 2017 Mar; 146(12):124104. PubMed ID: 28388105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies.
    Yang Y; Peng D; Lu J; Yang W
    J Chem Phys; 2014 Sep; 141(12):124104. PubMed ID: 25273409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.
    Yang Y; van Aggelen H; Yang W
    J Chem Phys; 2013 Dec; 139(22):224105. PubMed ID: 24329054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singlet-triplet energy gaps for diradicals from particle-particle random phase approximation.
    Yang Y; Peng D; Davidson ER; Yang W
    J Phys Chem A; 2015 May; 119(20):4923-32. PubMed ID: 25891638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RPA Atomization Energy Puzzle.
    Ruzsinszky A; Perdew JP; Csonka GI
    J Chem Theory Comput; 2010 Jan; 6(1):127-34. PubMed ID: 26614325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-particle and quasiparticle random phase approximations: connections to coupled cluster theory.
    Scuseria GE; Henderson TM; Bulik IW
    J Chem Phys; 2013 Sep; 139(10):104113. PubMed ID: 24050334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit.
    Zhou Y; Bahmann H; Ernzerhof M
    J Chem Phys; 2015 Sep; 143(12):124103. PubMed ID: 26428992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials.
    Jin Y; Yang Y; Zhang D; Peng D; Yang W
    J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple but fully nonlocal correction to the random phase approximation.
    Ruzsinszky A; Perdew JP; Csonka GI
    J Chem Phys; 2011 Mar; 134(11):114110. PubMed ID: 21428610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation energies from range-separated time-dependent density and density matrix functional theory.
    Pernal K
    J Chem Phys; 2012 May; 136(18):184105. PubMed ID: 22583275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Describing static correlation in bond dissociation by Kohn-Sham density functional theory.
    Fuchs M; Niquet YM; Gonze X; Burke K
    J Chem Phys; 2005 Mar; 122(9):094116. PubMed ID: 15836121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid functionals including random phase approximation correlation and second-order screened exchange.
    Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G
    J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random phase approximation with second-order screened exchange for current-carrying atomic states.
    Zhu W; Zhang L; Trickey SB
    J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Random phase approximation renormalized many-body perturbation theory.
    Bates JE; Furche F
    J Chem Phys; 2013 Nov; 139(17):171103. PubMed ID: 24206280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.