BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 24832337)

  • 1. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.
    Vashishta P; Kalia RK; Nakano A
    J Phys Chem B; 2006 Mar; 110(8):3727-33. PubMed ID: 16494430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based
    Ko HY; Jia J; Santra B; Wu X; Car R; DiStasio RA
    J Chem Theory Comput; 2020 Jun; 16(6):3757-3785. PubMed ID: 32045232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.
    Vadali RV; Shi Y; Kumar S; Kale LV; Tuckerman ME; Martyna GJ
    J Comput Chem; 2004 Dec; 25(16):2006-22. PubMed ID: 15473008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments.
    Tavernelli I
    Acc Chem Res; 2015 Mar; 48(3):792-800. PubMed ID: 25647401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A time-dependent density-functional approach to nonadiabatic electron-nucleus dynamics: formulation and photochemical application.
    Hirai H; Sugino O
    Phys Chem Chem Phys; 2009 Jun; 11(22):4570-8. PubMed ID: 19475177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.
    Sisto A; Glowacki DR; Martinez TJ
    Acc Chem Res; 2014 Sep; 47(9):2857-66. PubMed ID: 25186064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based
    Ko HY; Santra B; DiStasio RA
    J Chem Theory Comput; 2021 Dec; 17(12):7789-7813. PubMed ID: 34775753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive quantum chemistry: a divide-and-conquer ASED-MO method.
    Bosson M; Richard C; Plet A; Grudinin S; Redon S
    J Comput Chem; 2012 Mar; 33(7):779-90. PubMed ID: 22228556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.
    Andrade X; Alberdi-Rodriguez J; Strubbe DA; Oliveira MJ; Nogueira F; Castro A; Muguerza J; Arruabarrena A; Louie SG; Aspuru-Guzik A; Rubio A; Marques MA
    J Phys Condens Matter; 2012 Jun; 24(23):233202. PubMed ID: 22562950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations.
    Meng S; Kaxiras E
    J Chem Phys; 2008 Aug; 129(5):054110. PubMed ID: 18698891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel implementation of Γ-point pseudopotential plane-wave DFT with exact exchange.
    Bylaska EJ; Tsemekhman K; Baden SB; Weare JH; Jonsson H
    J Comput Chem; 2011 Jan; 32(1):54-69. PubMed ID: 20607748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules.
    Nelson T; Fernandez-Alberti S; Chernyak V; Roitberg AE; Tretiak S
    J Phys Chem B; 2011 May; 115(18):5402-14. PubMed ID: 21218841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.