BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24832355)

  • 1. Synchronous luminescence spectroscopic characterization of urine of normal subjects and cancer patients.
    Rajasekaran R; Aruna P; Koteeswaran D; Baludavid M; Ganesan S
    J Fluoresc; 2014 Jul; 24(4):1199-205. PubMed ID: 24832355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and diagnosis of cancer by native fluorescence spectroscopy of human urine.
    Rajasekaran R; Aruna PR; Koteeswaran D; Padmanabhan L; Muthuvelu K; Rai RR; Thamilkumar P; Murali Krishna C; Ganesan S
    Photochem Photobiol; 2013; 89(2):483-91. PubMed ID: 22971002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High wavenumber Raman spectroscopy in the characterization of urinary metabolites of normal subjects, oral premalignant and malignant patients.
    Brindha E; Rajasekaran R; Aruna P; Koteeswaran D; Ganesan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():52-59. PubMed ID: 27475997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination among melanoma, nevi, and normal skin by using synchronous luminescence spectroscopy.
    Zeković I; Dramićanin T; Lenhardt L; Bandić J; Dramićanin MD
    Appl Spectrosc; 2014; 68(8):823-30. PubMed ID: 25061783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence characteristics of human urine from normal individuals and ovarian cancer patients.
    Zvarik M; Martinicky D; Hunakova L; Lajdova I; Sikurova L
    Neoplasma; 2013; 60(5):533-7. PubMed ID: 23790172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state and time-resolved fluorescence spectroscopic characterization of urine of healthy subjects and cervical cancer patients.
    Rajasekaran R; Aruna PR; Koteeswaran D; Bharanidharan G; Baludavid M; Ganesan S
    J Biomed Opt; 2014 Mar; 19(3):37003. PubMed ID: 24647974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of urinary pteridine levels as potential biomarkers for noninvasive diagnosis of cancer.
    Gamagedara S; Gibbons S; Ma Y
    Clin Chim Acta; 2011 Jan; 412(1-2):120-8. PubMed ID: 20869359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy.
    Madhuri S; Vengadesan N; Aruna P; Koteeswaran D; Venkatesan P; Ganesan S
    Photochem Photobiol; 2003 Aug; 78(2):197-204. PubMed ID: 12945589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues.
    Dramićanin T; Dramićanin MD; Jokanović V; Nikolić-Vukosavljević D; Dimitrijević B
    Photochem Photobiol; 2005; 81(6):1554-8. PubMed ID: 16149859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous Luminescence Spectroscopy as a Tool in the Discrimination and Characterization of Oral Cancer Tissue.
    Gnanatheepam E; Kanniyappan U; Dornadula K; Prakasarao A; Singaravelu G
    J Fluoresc; 2019 Mar; 29(2):361-367. PubMed ID: 30675678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of riboflavin in the urine of patients with malignant tumors].
    KAGAN IaA
    Khirurgiia (Mosk); 1960 Feb; 36():103-8. PubMed ID: 13853201
    [No Abstract]   [Full Text] [Related]  

  • 12. Differences in Spectroscopic Properties of Saliva Taken From Normal Subjects and Oral Cancer Patients: Comparison Studies.
    Supawat B; Aye KT; Ritpanja J; Nueangwong W; Kothan S; Pan J; Tungjai M
    J Fluoresc; 2021 May; 31(3):747-754. PubMed ID: 33638767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro.
    Ebenezar J; Aruna P; Ganesan S
    Photochem Photobiol; 2010; 86(1):77-86. PubMed ID: 19845540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Normal and pathologic metabolism of pteridines in man].
    Dhondt JL; Bellhasene Z; Largilliere C; Bonneterre J; Farriaux JP
    LARC Med; 1982 May; 2(5):431-3. PubMed ID: 7167018
    [No Abstract]   [Full Text] [Related]  

  • 15. Pteridine detection in urine: the future of cancer diagnostics?
    Ma Y; Burton C
    Biomark Med; 2013 Oct; 7(5):679-81. PubMed ID: 24044558
    [No Abstract]   [Full Text] [Related]  

  • 16. [Urinary riboflavin in animals with implanted tumors].
    KAGAN IaA
    Vopr Onkol; 1955; 1(3):88-91. PubMed ID: 13299800
    [No Abstract]   [Full Text] [Related]  

  • 17. Cancer detection by native fluorescence of urine.
    Masilamani V; Vijmasi T; Al Salhi M; Govindaraj K; Vijaya-Raghavan AP; Antonisamy B
    J Biomed Opt; 2010; 15(5):057003. PubMed ID: 21054119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and classification of pathogenic bacteria using native fluorescence and spectral deconvolution.
    Sundaramoorthy A; Bharanidharan G; Prakasarao A; Ganesan S
    J Biophotonics; 2024 Jun; ():e202300566. PubMed ID: 38847123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry.
    Silva CL; Passos M; Câmara JS
    Br J Cancer; 2011 Dec; 105(12):1894-904. PubMed ID: 22085842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous detection of six urinary pteridines and creatinine by high-performance liquid chromatography-tandem mass spectrometry for clinical breast cancer detection.
    Burton C; Shi H; Ma Y
    Anal Chem; 2013 Nov; 85(22):11137-45. PubMed ID: 24138137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.