These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 24833171)
1. Engineering complex biological systems in bacteria through recombinase-assisted genome engineering. Santos CN; Yoshikuni Y Nat Protoc; 2014; 9(6):1320-36. PubMed ID: 24833171 [TBL] [Abstract][Full Text] [Related]
2. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Santos CN; Regitsky DD; Yoshikuni Y Nat Commun; 2013; 4():2503. PubMed ID: 24056574 [TBL] [Abstract][Full Text] [Related]
3. A RAGE Based Strategy for the Genome Engineering of the Human Respiratory Pathogen Garcia-Morales L; Ruiz E; Gourgues G; Rideau F; Piñero-Lambea C; Lluch-Senar M; Blanchard A; Lartigue C ACS Synth Biol; 2020 Oct; 9(10):2737-2748. PubMed ID: 33017534 [TBL] [Abstract][Full Text] [Related]
4. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering. Ryu YS; Biswas RK; Shin K; Parisutham V; Kim SM; Lee SK PLoS One; 2014; 9(4):e94266. PubMed ID: 24747264 [TBL] [Abstract][Full Text] [Related]
6. Recombinase-mediated cassette exchange (RMCE) and BAC engineering via VCre/VloxP and SCre/SloxP systems. Minorikawa S; Nakayama M Biotechniques; 2011 Apr; 50(4):235-46. PubMed ID: 21548907 [TBL] [Abstract][Full Text] [Related]
7. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain. Song J; Dong H; Ma C; Zhao B; Shang G FEMS Microbiol Lett; 2010 Aug; 309(2):178-83. PubMed ID: 20618864 [TBL] [Abstract][Full Text] [Related]
8. Escherichia coli MW005: lambda Red-mediated recombineering and copy-number induction of oriV-equipped constructs in a single host. Westenberg M; Bamps S; Soedling H; Hope IA; Dolphin CT BMC Biotechnol; 2010 Mar; 10():27. PubMed ID: 20350301 [TBL] [Abstract][Full Text] [Related]
9. Development of a Recombineering System for the Acetogen Sanford PA; Woolston BM ACS Synth Biol; 2024 Aug; 13(8):2505-2514. PubMed ID: 39033464 [No Abstract] [Full Text] [Related]
11. Phage recombinases and their applications. Murphy KC Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome. Sjöberg G; Guevara-Martínez M; van Maris AJA; Gustavsson M J Biotechnol; 2019 Nov; 305():43-50. PubMed ID: 31505217 [TBL] [Abstract][Full Text] [Related]
13. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Testa G; Zhang Y; Vintersten K; Benes V; Pijnappel WW; Chambers I; Smith AJ; Smith AG; Stewart AF Nat Biotechnol; 2003 Apr; 21(4):443-7. PubMed ID: 12627172 [TBL] [Abstract][Full Text] [Related]
14. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome. Juhas M; Ajioka JW J Microbiol Methods; 2016 Jun; 125():1-7. PubMed ID: 27033694 [TBL] [Abstract][Full Text] [Related]
15. Genome engineering and gene expression control for bacterial strain development. Song CW; Lee J; Lee SY Biotechnol J; 2015 Jan; 10(1):56-68. PubMed ID: 25155412 [TBL] [Abstract][Full Text] [Related]
19. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Sun Z; Deng A; Hu T; Wu J; Sun Q; Bai H; Zhang G; Wen T Appl Microbiol Biotechnol; 2015 Jun; 99(12):5151-62. PubMed ID: 25750031 [TBL] [Abstract][Full Text] [Related]
20. Dual-In/Out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure. Minaeva NI; Gak ER; Zimenkov DV; Skorokhodova AY; Biryukova IV; Mashko SV BMC Biotechnol; 2008 Aug; 8():63. PubMed ID: 18699991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]