These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24833171)

  • 1. Engineering complex biological systems in bacteria through recombinase-assisted genome engineering.
    Santos CN; Yoshikuni Y
    Nat Protoc; 2014; 9(6):1320-36. PubMed ID: 24833171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of stable and complex biological systems through recombinase-assisted genome engineering.
    Santos CN; Regitsky DD; Yoshikuni Y
    Nat Commun; 2013; 4():2503. PubMed ID: 24056574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A RAGE Based Strategy for the Genome Engineering of the Human Respiratory Pathogen
    Garcia-Morales L; Ruiz E; Gourgues G; Rideau F; Piñero-Lambea C; Lluch-Senar M; Blanchard A; Lartigue C
    ACS Synth Biol; 2020 Oct; 9(10):2737-2748. PubMed ID: 33017534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.
    Ryu YS; Biswas RK; Shin K; Parisutham V; Kim SM; Lee SK
    PLoS One; 2014; 9(4):e94266. PubMed ID: 24747264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red-mediated recombineering of Salmonella enterica genomes.
    Czarniak F; Hensel M
    Methods Mol Biol; 2015; 1225():63-79. PubMed ID: 25253248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinase-mediated cassette exchange (RMCE) and BAC engineering via VCre/VloxP and SCre/SloxP systems.
    Minorikawa S; Nakayama M
    Biotechniques; 2011 Apr; 50(4):235-46. PubMed ID: 21548907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain.
    Song J; Dong H; Ma C; Zhao B; Shang G
    FEMS Microbiol Lett; 2010 Aug; 309(2):178-83. PubMed ID: 20618864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli MW005: lambda Red-mediated recombineering and copy-number induction of oriV-equipped constructs in a single host.
    Westenberg M; Bamps S; Soedling H; Hope IA; Dolphin CT
    BMC Biotechnol; 2010 Mar; 10():27. PubMed ID: 20350301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Recombineering System for the Acetogen
    Sanford PA; Woolston BM
    ACS Synth Biol; 2024 Aug; 13(8):2505-2514. PubMed ID: 39033464
    [No Abstract]   [Full Text] [Related]  

  • 10. Toward Genome-Based Metabolic Engineering in Bacteria.
    Oesterle S; Wuethrich I; Panke S
    Adv Appl Microbiol; 2017; 101():49-82. PubMed ID: 29050667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage recombinases and their applications.
    Murphy KC
    Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome.
    Sjöberg G; Guevara-Martínez M; van Maris AJA; Gustavsson M
    J Biotechnol; 2019 Nov; 305():43-50. PubMed ID: 31505217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles.
    Testa G; Zhang Y; Vintersten K; Benes V; Pijnappel WW; Chambers I; Smith AJ; Smith AG; Stewart AF
    Nat Biotechnol; 2003 Apr; 21(4):443-7. PubMed ID: 12627172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.
    Juhas M; Ajioka JW
    J Microbiol Methods; 2016 Jun; 125():1-7. PubMed ID: 27033694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome engineering and gene expression control for bacterial strain development.
    Song CW; Lee J; Lee SY
    Biotechnol J; 2015 Jan; 10(1):56-68. PubMed ID: 25155412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tools for genome-wide strain design and construction.
    Boyle NR; Gill RT
    Curr Opin Biotechnol; 2012 Oct; 23(5):666-71. PubMed ID: 22357141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Step Bacterial Artificial Chromosome (BAC) Engineering: Preparation of Shuttle Vector DNA.
    Heintz N; Gong S
    Cold Spring Harb Protoc; 2020 Apr; 2020(4):098038. PubMed ID: 32238589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgene Recombineering in Bacterial Artificial Chromosomes.
    Zeidler MG; Saunders TL
    Methods Mol Biol; 2019; 1874():43-69. PubMed ID: 30353507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35.
    Sun Z; Deng A; Hu T; Wu J; Sun Q; Bai H; Zhang G; Wen T
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5151-62. PubMed ID: 25750031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-In/Out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure.
    Minaeva NI; Gak ER; Zimenkov DV; Skorokhodova AY; Biryukova IV; Mashko SV
    BMC Biotechnol; 2008 Aug; 8():63. PubMed ID: 18699991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.