These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24833257)

  • 21. Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells.
    Docampo P; Guldin S; Steiner U; Snaith HJ
    J Phys Chem Lett; 2013 Mar; 4(5):698-703. PubMed ID: 26281921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells.
    Kang SH
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6318-21. PubMed ID: 25936111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spherical TiO2 aggregates with different building units for dye-sensitized solar cells.
    Liu Z; Su X; Hou G; Bi S; Xiao Z; Jia H
    Nanoscale; 2013 Sep; 5(17):8177-83. PubMed ID: 23892684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined strategy to realize efficient photoelectrodes for low temperature fabrication of dye solar cells.
    Alberti A; De Marco L; Pellegrino G; Condorelli GG; Giannuzzi R; Scarfiello R; Manca M; Spinella C; Gigli G; La Magna A
    ACS Appl Mater Interfaces; 2014 May; 6(9):6425-33. PubMed ID: 24694230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor.
    Nian JN; Teng H
    J Phys Chem B; 2006 Mar; 110(9):4193-8. PubMed ID: 16509714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.
    Liu B; Aydil ES
    J Am Chem Soc; 2009 Mar; 131(11):3985-90. PubMed ID: 19245201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid Titania Photoanodes with a Nanostructured Multi-Layer Configuration for Highly Efficient Dye-Sensitized Solar Cells.
    Wu HP; Lan CM; Hu JY; Huang WK; Shiu JW; Lan ZJ; Tsai CM; Su CH; Diau EW
    J Phys Chem Lett; 2013 May; 4(9):1570-7. PubMed ID: 26282315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells.
    Ye M; Chen C; Lv M; Zheng D; Guo W; Lin C
    Nanoscale; 2013 Jul; 5(14):6577-83. PubMed ID: 23759872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film.
    Jiu J; Isoda S; Wang F; Adachi M
    J Phys Chem B; 2006 Feb; 110(5):2087-92. PubMed ID: 16471788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designed synthesis and stacking architecture of solid and mesoporous TiO(2) nanoparticles for enhancing the light-harvesting efficiency of dye-sensitized solar cells.
    Ahn JY; Moon KJ; Kim JH; Lee SH; Kang JW; Lee HW; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):903-9. PubMed ID: 24377279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved nonaqueous synthesis of TiO2 for dye-sensitized solar cells.
    Stefik M; Heiligtag FJ; Niederberger M; Grätzel M
    ACS Nano; 2013 Oct; 7(10):8981-9. PubMed ID: 24015772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrothermal synthesis of anatase TiO2 nanorods with high crystallinity using ammonia solution as a solvent.
    Zhang DR; Cha HG; Kang YS
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6007-12. PubMed ID: 22121648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous TiO2 single crystals: facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance.
    Zheng X; Kuang Q; Yan K; Qiu Y; Qiu J; Yang S
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11249-57. PubMed ID: 24080091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO₂ nanoparticles and electrospun TiO₂/SiO₂ nanofibers.
    Wang X; Xi M; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15925-32. PubMed ID: 25162500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer.
    Yang L; Leung WW; Wang J
    Nanoscale; 2013 Aug; 5(16):7493-8. PubMed ID: 23831867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays.
    Liu J; Kuo YT; Klabunde KJ; Rochford C; Wu J; Li J
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1645-9. PubMed ID: 20355778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO₂ for dye-sensitized solar cells.
    Lee CS; Kim JK; Lim JY; Kim JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20842-50. PubMed ID: 25397581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells.
    Poudel P; Qiao Q
    Nanoscale; 2012 Apr; 4(9):2826-38. PubMed ID: 22447033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of solar energy conversion with Nb-incorporated TiO2 hierarchical microspheres.
    Hoang S; Ngo TQ; Berglund SP; Fullon RR; Ekerdt JG; Mullins CB
    Chemphyschem; 2013 Jul; 14(10):2270-6. PubMed ID: 23512241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.