BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24833590)

  • 1. Hierarchy of breast cancer cells: key to reverse dormancy for therapeutic intervention.
    Bliss SA; Greco SJ; Rameshwar P
    Stem Cells Transl Med; 2014 Jul; 3(7):782-6. PubMed ID: 24833590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bone marrow niche in support of breast cancer dormancy.
    Walker ND; Patel J; Munoz JL; Hu M; Guiro K; Sinha G; Rameshwar P
    Cancer Lett; 2016 Sep; 380(1):263-71. PubMed ID: 26546045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy.
    Patel SA; Ramkissoon SH; Bryan M; Pliner LF; Dontu G; Patel PS; Amiri S; Pine SR; Rameshwar P
    Sci Rep; 2012; 2():906. PubMed ID: 23205268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting.
    Talukdar S; Bhoopathi P; Emdad L; Das S; Sarkar D; Fisher PB
    Adv Cancer Res; 2019; 141():43-84. PubMed ID: 30691685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-mediated changes in bone marrow microenvironment in breast cancer dormancy.
    Ferrer A; Roser CT; El-Far MH; Savanur VH; Eljarrah A; Gergues M; Kra JA; Etchegaray JP; Rameshwar P
    Cancer Lett; 2020 Sep; 488():9-17. PubMed ID: 32479768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel model of dormancy for bone metastatic breast cancer cells.
    Marlow R; Honeth G; Lombardi S; Cariati M; Hessey S; Pipili A; Mariotti V; Buchupalli B; Foster K; Bonnet D; Grigoriadis A; Rameshwar P; Purushotham A; Tutt A; Dontu G
    Cancer Res; 2013 Dec; 73(23):6886-99. PubMed ID: 24145351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putting the brakes on breast cancer: therapeutic opportunities to bring cancer stem cells and the tumor microenvironment to a screeching halt.
    Vargo-Gogola T
    Curr Drug Targets; 2010 Sep; 11(9):1041-2. PubMed ID: 20545615
    [No Abstract]   [Full Text] [Related]  

  • 8. Bone Marrow Micro-Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies.
    Sarkaria SM; Decker M; Ding L
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29384206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone Metastasis: Molecular Mechanisms Implicated in Tumour Cell Dormancy in Breast and Prostate Cancer.
    Quayle L; Ottewell PD; Holen I
    Curr Cancer Drug Targets; 2015; 15(6):469-80. PubMed ID: 25968899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Notch Signaling in Breast Cancer: A Role in Drug Resistance.
    BeLow M; Osipo C
    Cells; 2020 Sep; 9(10):. PubMed ID: 33003540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma.
    Walker ND; Elias M; Guiro K; Bhatia R; Greco SJ; Bryan M; Gergues M; Sandiford OA; Ponzio NM; Leibovich SJ; Rameshwar P
    Cell Death Dis; 2019 Jan; 10(2):59. PubMed ID: 30683851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance.
    Guo W
    Stem Cells Transl Med; 2014 Aug; 3(8):942-8. PubMed ID: 24904174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammary gland stem cells and their application in breast cancer.
    Yang X; Wang H; Jiao B
    Oncotarget; 2017 Feb; 8(6):10675-10691. PubMed ID: 27793013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the perpetrator: breast cancer stem cell therapeutics.
    Pal A; Valdez KE; Carletti MZ; Behbod F
    Curr Drug Targets; 2010 Sep; 11(9):1147-56. PubMed ID: 20545606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal Stem Cell-Secreted Extracellular Vesicles Instruct Stepwise Dedifferentiation of Breast Cancer Cells into Dormancy at the Bone Marrow Perivascular Region.
    Sandiford OA; Donnelly RJ; El-Far MH; Burgmeyer LM; Sinha G; Pamarthi SH; Sherman LS; Ferrer AI; DeVore DE; Patel SA; Naaldijk Y; Alonso S; Barak P; Bryan M; Ponzio NM; Narayanan R; Etchegaray JP; Kumar R; Rameshwar P
    Cancer Res; 2021 Mar; 81(6):1567-1582. PubMed ID: 33500249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of tumor stroma on drug response in breast cancer.
    Dittmer J; Leyh B
    Semin Cancer Biol; 2015 Apr; 31():3-15. PubMed ID: 24912116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What are the clinical implications of breast-cancer stem cells?
    Senior K
    Lancet Oncol; 2008 Jun; 9(6):514. PubMed ID: 18536117
    [No Abstract]   [Full Text] [Related]  

  • 18. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells.
    Ono M; Kosaka N; Tominaga N; Yoshioka Y; Takeshita F; Takahashi RU; Yoshida M; Tsuda H; Tamura K; Ochiya T
    Sci Signal; 2014 Jul; 7(332):ra63. PubMed ID: 24985346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance.
    Luo M; Brooks M; Wicha MS
    Curr Pharm Des; 2015; 21(10):1301-10. PubMed ID: 25506895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormonal Therapy Resistance and Breast Cancer: Involvement of Adipocytes and Leptin.
    Delort L; Bougaret L; Cholet J; Vermerie M; Billard H; Decombat C; Bourgne C; Berger M; Dumontet C; Caldefie-Chezet F
    Nutrients; 2019 Nov; 11(12):. PubMed ID: 31756890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.