These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24834030)

  • 1. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces.
    Mandonnet E; Duffau H
    Front Syst Neurosci; 2014; 8():82. PubMed ID: 24834030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery.
    Duffau H
    Cortex; 2014 Sep; 58():325-37. PubMed ID: 24050218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging.
    Hartwigsen G; Volz LJ
    Neuroimage; 2021 Jan; 224():117449. PubMed ID: 33059054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis.
    Bai Z; Fong KNK; Zhang JJ; Chan J; Ting KH
    J Neuroeng Rehabil; 2020 Apr; 17(1):57. PubMed ID: 32334608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three core techniques in surgery of neuroepithelial tumors in eloquent areas: awake anaesthesia, intraoperative direct electrical stimulation and ultrasonography.
    Bai HM; Wang WM; Li TD; He H; Shi C; Guo XF; Liu Y; Wang LM; Wang SS
    Chin Med J (Engl); 2011 Oct; 124(19):3035-41. PubMed ID: 22040550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging brain-computer interface and functional electrical stimulation technologies for movement restoration.
    Bouton CE
    Handb Clin Neurol; 2020; 168():303-309. PubMed ID: 32164861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Electrical Stimulation in Electrocorticographic Brain-Computer Interfaces: Enabling Technologies for Input to Cortex.
    Caldwell DJ; Ojemann JG; Rao RPN
    Front Neurosci; 2019; 13():804. PubMed ID: 31440127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming.
    Duffau H; Moritz-Gasser S; Mandonnet E
    Brain Lang; 2014 Apr; 131():1-10. PubMed ID: 23866901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hodotopy, neuroplasticity and diffuse gliomas.
    Duffau H
    Neurochirurgie; 2017 Jun; 63(3):259-265. PubMed ID: 28522182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control.
    Daly I; Faller J; Scherer R; Sweeney-Reed CM; Nasuto SJ; Billinger M; Müller-Putz GR
    Front Neuroeng; 2014; 7():20. PubMed ID: 25071544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex.
    Southwell DG; Hervey-Jumper SL; Perry DW; Berger MS
    J Neurosurg; 2016 May; 124(5):1460-9. PubMed ID: 26544767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological regulation of thinking: brain-computer interface (BCI) research.
    Birbaumer N; Weber C; Neuper C; Buch E; Haapen K; Cohen L
    Prog Brain Res; 2006; 159():369-91. PubMed ID: 17071243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity--a review.
    Duffau H
    J Neurooncol; 2006 Aug; 79(1):77-115. PubMed ID: 16607477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional brain-computer interfaces.
    Hughes C; Herrera A; Gaunt R; Collinger J
    Handb Clin Neurol; 2020; 168():163-181. PubMed ID: 32164851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas.
    Rivera-Rivera PA; Rios-Lago M; Sanchez-Casarrubios S; Salazar O; Yus M; González-Hidalgo M; Sanz A; Avecillas-Chasin J; Alvarez-Linera J; Pascual-Leone A; Oliviero A; Barcia JA
    J Neurosurg; 2017 Apr; 126(4):1323-1333. PubMed ID: 27203145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation mapping of white matter tracts to study brain functional connectivity.
    Duffau H
    Nat Rev Neurol; 2015 May; 11(5):255-65. PubMed ID: 25848923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia.
    King CE; Wang PT; McCrimmon CM; Chou CC; Do AH; Nenadic Z
    J Neuroeng Rehabil; 2015 Sep; 12():80. PubMed ID: 26400061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Substrate Expansion for the Restoration of Brain Function.
    Chen HI; Jgamadze D; Serruya MD; Cullen DK; Wolf JA; Smith DH
    Front Syst Neurosci; 2016; 10():1. PubMed ID: 26834579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.