These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24834327)

  • 21. A climate adaptation strategy for Mai Po Inner Deep Bay Ramsar site: Steppingstone to climate proofing the East Asian-Australasian Flyway.
    Wikramanayake E; Or C; Costa F; Wen X; Cheung F; Shapiro A
    PLoS One; 2020; 15(10):e0239945. PubMed ID: 33085699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The direct and indirect effects of extreme climate events on insects.
    Filazzola A; Matter SF; MacIvor JS
    Sci Total Environ; 2021 May; 769():145161. PubMed ID: 33486167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The evolution of insect body coloration under changing climates.
    Clusella-Trullas S; Nielsen M
    Curr Opin Insect Sci; 2020 Oct; 41():25-32. PubMed ID: 32629405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary consequences of climate-induced range shifts in insects.
    Sánchez-Guillén RA; Córdoba-Aguilar A; Hansson B; Ott J; Wellenreuther M
    Biol Rev Camb Philos Soc; 2016 Nov; 91(4):1050-1064. PubMed ID: 26150047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vulnerability and resilience of tropical forest species to land-use change.
    Stork NE; Coddington JA; Colwell RK; Chazdon RL; Dick CW; Peres CA; Sloan S; Willis K
    Conserv Biol; 2009 Dec; 23(6):1438-47. PubMed ID: 20078644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Terrestrial insects along elevation gradients: species and community responses to altitude.
    Hodkinson ID
    Biol Rev Camb Philos Soc; 2005 Aug; 80(3):489-513. PubMed ID: 16094810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios.
    Ruhí A; Boix D; Gascón S; Sala J; Batzer DP
    PLoS One; 2013; 8(11):e81739. PubMed ID: 24312347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybridization in a warmer world.
    Chunco AJ
    Ecol Evol; 2014 May; 4(10):2019-31. PubMed ID: 24963394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A tool to assess potential for alien plant establishment and expansion under climate change.
    Roger E; Duursma DE; Downey PO; Gallagher RV; Hughes L; Steel J; Johnson SB; Leishman MR
    J Environ Manage; 2015 Aug; 159():121-127. PubMed ID: 26063516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetlands rise and fall: Six endangered wetland species showed different patterns of habitat shift under future climate change.
    Cao B; Bai C; Xue Y; Yang J; Gao P; Liang H; Zhang L; Che L; Wang J; Xu J; Duan C; Mao M; Li G
    Sci Total Environ; 2020 Aug; 731():138518. PubMed ID: 32417470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate-driven diversity dynamics in plants and plant-feeding insects.
    Nyman T; Linder HP; Peña C; Malm T; Wahlberg N
    Ecol Lett; 2012 Aug; 15(8):889-98. PubMed ID: 22507539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impacts of climate warming on terrestrial ectotherms across latitude.
    Deutsch CA; Tewksbury JJ; Huey RB; Sheldon KS; Ghalambor CK; Haak DC; Martin PR
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6668-72. PubMed ID: 18458348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large Scale Relationship between Aquatic Insect Traits and Climate.
    Bhowmik AK; Schäfer RB
    PLoS One; 2015; 10(6):e0130025. PubMed ID: 26080074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species.
    Flousek J; Telenský T; Hanzelka J; Reif J
    PLoS One; 2015; 10(10):e0139465. PubMed ID: 26426901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extinction risk of narrowly distributed species of seed plants in Brazil due to habitat loss and climate change.
    da Silva JMC; Rapini A; Barbosa LCF; Torres RR
    PeerJ; 2019; 7():e7333. PubMed ID: 31367486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.
    Davis J; Pavlova A; Thompson R; Sunnucks P
    Glob Chang Biol; 2013 Jul; 19(7):1970-84. PubMed ID: 23526791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States.
    Pyne MI; Poff NL
    Glob Chang Biol; 2017 Jan; 23(1):77-93. PubMed ID: 27429092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.