These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24834440)

  • 1. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.
    Costescu BI; Gräter F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12582-90. PubMed ID: 24834440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the elastic properties of graphene by indentation and the validity of classical models of indentation.
    Fair KM; Arnold MD; Ford MJ
    J Phys Condens Matter; 2014 Jan; 26(1):015307. PubMed ID: 24292235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of adhesion on the contact radius in atomic force microscopy indentation.
    Sirghi L; Rossi F
    Nanotechnology; 2009 Sep; 20(36):365702. PubMed ID: 19687552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory.
    Rasuli R; Iraji Zad A; Ahadian MM
    Nanotechnology; 2010 May; 21(18):185503. PubMed ID: 20388969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the determination of elastic moduli of cells by AFM based indentation.
    Ding Y; Xu GK; Wang GF
    Sci Rep; 2017 Apr; 7():45575. PubMed ID: 28368053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the elastic properties of few-layer graphene from the free-standing indentation response.
    Zhou L; Wang Y; Cao G
    J Phys Condens Matter; 2013 Nov; 25(47):475301. PubMed ID: 24166876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes.
    Boneschanscher MP; van der Lit J; Sun Z; Swart I; Liljeroth P; Vanmaekelbergh D
    ACS Nano; 2012 Nov; 6(11):10216-21. PubMed ID: 23039032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer.
    Zhou L; Wang Y; Cao G
    J Phys Condens Matter; 2013 Nov; 25(47):475303. PubMed ID: 24172251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of monolayer graphene oxide.
    Suk JW; Piner RD; An J; Ruoff RS
    ACS Nano; 2010 Nov; 4(11):6557-64. PubMed ID: 20942443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability.
    Lanza M; Gao T; Yin Z; Zhang Y; Liu Z; Tong Y; Shen Z; Duan H
    Nanoscale; 2013 Nov; 5(22):10816-23. PubMed ID: 24072032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutting of oxidized graphene into nanosized pieces.
    Fujii S; Enoki T
    J Am Chem Soc; 2010 Jul; 132(29):10034-41. PubMed ID: 20590120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.
    Lazar P; Zhang S; Safářová K; Li Q; Froning JP; Granatier J; Hobza P; Zbořil R; Besenbacher F; Dong M; Otyepka M
    ACS Nano; 2013 Feb; 7(2):1646-51. PubMed ID: 23346897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic response of graphene nanodomes.
    Koch S; Stradi D; Gnecco E; Barja S; Kawai S; Díaz C; Alcamí M; Martín F; Vázquez de Parga AL; Miranda R; Glatzel T; Meyer E
    ACS Nano; 2013 Apr; 7(4):2927-34. PubMed ID: 23473381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tearing graphene sheets from adhesive substrates produces tapered nanoribbons.
    Sen D; Novoselov KS; Reis PM; Buehler MJ
    Small; 2010 May; 6(10):1108-16. PubMed ID: 20449852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tribological behavior of a charged atomic force microscope tip on graphene oxide films.
    Jiang Y; Li Y; Liang B; Yang X; Han T; Wang Z
    Nanotechnology; 2012 Dec; 23(49):495703. PubMed ID: 23149394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression, Rupture, and Puncture of Model Membranes at the Molecular Scale.
    Saavedra V O; Fernandes TFD; Milhiet PE; Costa L
    Langmuir; 2020 Jun; 36(21):5709-5716. PubMed ID: 32427478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.