BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24834715)

  • 1. [Estimation of ATP-dependent K(+)-channel contribution to potential-dependent potassium uptake in the rat brain mitochondria].
    Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF
    Ukr Biochem J; 2014; 86(1):21-8. PubMed ID: 24834715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of potential-dependent potassium uptake on membrane potential in rat brain mitochondria].
    Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF
    Ukr Biokhim Zh (1999); 2013; 85(1):33-41. PubMed ID: 23534288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of potential-dependent potassium uptake on production of reactive oxygen species in rat brain mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovska IN; Sagach VF
    Biochemistry (Mosc); 2014 Jan; 79(1):44-53. PubMed ID: 24512663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of potassium ion transport and ATP synthesis in pea cotyledon mitochondria.
    Hamman WM; Spencer M
    Can J Biochem; 1977 Apr; 55(4):376-83. PubMed ID: 858087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium uptake in rat liver mitochondria accompanied by activation of ATP-dependent potassium channel.
    Akopova OV; Nosar VI; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2008 Oct; 73(10):1146-53. PubMed ID: 18991562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ATP-dependent K(+)-channel opener on K(+)-cycle and oxygen consumption in rat liver mitochondria.
    Akopova OV; Nosar VI; Bouryi VA; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2010 Sep; 75(9):1139-47. PubMed ID: 21077833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of ATP-dependent K(+)-channel opener on the functional state and the opening of cyclosporine-sensitive pore in rat liver mitochondria].
    Akopova OV; Nosar' VI; Buryĭ VA; Kolchinskaia LI; Man'kovskaia IN; Sagach VF
    Ukr Biokhim Zh (1999); 2013; 85(3):38-51. PubMed ID: 23937047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP.
    BeltrandelRio H; Wilson JE
    Arch Biochem Biophys; 1991 Apr; 286(1):183-94. PubMed ID: 1897945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effect of ATP-dependent K(+)-channel opener on transmembrane potassium exchange and reactive oxygen species production upon the opening of mitochondrial pore].
    Akopova OV; Kolchinskaia LI; Nosar' VI; Buryĭ VA; Man'kovskaia IN; Sagach VF
    Ukr Biochem J; 2014; 86(2):26-40. PubMed ID: 24868909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.
    Brustovetsky T; Shalbuyeva N; Brustovetsky N
    J Physiol; 2005 Oct; 568(Pt 1):47-59. PubMed ID: 16051627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single channel studies of the ATP-regulated potassium channel in brain mitochondria.
    Choma K; Bednarczyk P; Koszela-Piotrowska I; Kulawiak B; Kudin A; Kunz WS; Dołowy K; Szewczyk A
    J Bioenerg Biomembr; 2009 Aug; 41(4):323-34. PubMed ID: 19821034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stronger control of ATP/ADP by proton leak in pancreatic beta-cells than skeletal muscle mitochondria.
    Affourtit C; Brand MD
    Biochem J; 2006 Jan; 393(Pt 1):151-9. PubMed ID: 16137248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of potential-dependent potassium uptake on calcium accumulation in rat brain mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2013 Jan; 78(1):80-90. PubMed ID: 23379563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphorus/oxygen ratio of mitochondrial oxidative phosphorylation.
    Hinkle PC; Yu ML
    J Biol Chem; 1979 Apr; 254(7):2450-5. PubMed ID: 34606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Diazoxide-induced mitochondrial swelling in the rat myometrium as a consequence of the activation of the mitochondrial ATP-sensitive (K+)-channel].
    Vadziuk OB; Kosterin SA
    Ukr Biokhim Zh (1999); 2008; 80(5):45-51. PubMed ID: 19248617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies.
    Dzbek J; Korzeniewski B
    J Biol Chem; 2008 Nov; 283(48):33232-9. PubMed ID: 18694940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankyrin regulates KATP channel membrane trafficking and gating in excitable cells.
    Kline CF; Hund TJ; Mohler PJ
    Channels (Austin); 2010; 4(1):55-7. PubMed ID: 19901534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of hypoxenum on bioenergetic processes in mitochondria and the activity of ATP-sensitive potassium channel].
    Murzaeva SV; Abramova MB; Popova II; Gritsenko EN; Mironova GD; Lezhnev EI
    Biofizika; 2010; 55(5):814-21. PubMed ID: 21033347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ATP-induced K(+)-transport pathway of yeast mitochondria may function as an uncoupling pathway.
    Manon S; Guérin M
    Biochim Biophys Acta; 1997 Feb; 1318(3):317-21. PubMed ID: 9048974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.